Mining the thiol proteome for sulfenic acid modifications reveals new targets for oxidation in cells.

نویسندگان

  • Stephen E Leonard
  • Khalilah G Reddie
  • Kate S Carroll
چکیده

Oxidation of cysteine to sulfenic acid has emerged as a biologically relevant post-translational modification with particular importance in redox-mediated signal transduction; however, the identity of modified proteins remains largely unknown. We recently reported DAz-1, a cell-permeable chemical probe capable of detecting sulfenic acid modified proteins directly in living cells. Here we describe DAz-2, an analogue of DAz-1 that exhibits significantly improved potency in vitro and in cells. Application of this new probe for global analysis of the sulfenome in a tumor cell line identifies most known sulfenic acid modified proteins: 14 in total, plus more than 175 new candidates, with further testing confirming oxidation in several candidates. The newly identified proteins have roles in signal transduction, DNA repair, metabolism, protein synthesis, redox homeostasis, nuclear transport, vesicle trafficking, and ER quality control. Cross-comparison of these results with those from disulfide, S-glutathionylation, and S-nitrosylation proteomes reveals moderate overlap, suggesting fundamental differences in the chemical and biological basis for target specificity. The combination of selective chemical enrichment and live-cell compatibility makes DAz-2 a powerful new tool with the potential to reveal new regulatory mechanisms in signaling pathways and identify new therapeutic targets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Profiling protein thiol oxidation in tumor cells using sulfenic acid-specific antibodies.

Hydrogen peroxide (H2O2) functions as a second messenger that can activate cell proliferation through chemoselective oxidation of cysteine residues in signaling proteins. The connection between H2O2 signaling, thiol oxidation, and activation of growth pathways has emerged as fertile ground for the development of strategies for cancer treatment. Central to achieving this goal is the development ...

متن کامل

Oxidation of the albumin thiol to sulfenic acid and its implications in the intravascular compartment.

Human serum albumin (HSA) is the most abundant protein in the intravascular compartment. It possesses a single thiol, Cys34, which constitutes ~80% of the total thiols in plasma. This thiol is able to scavenge plasma oxidants. A central intermediate in this potential antioxidant activity of human serum albumin is sulfenic acid (HSA-SOH). Work from our laboratories has demonstrated the formation...

متن کامل

RegB kinase activity is repressed by oxidative formation of cysteine sulfenic acid.

RegB/RegA comprise a global redox-sensing signal transduction system utilized by a wide range of proteobacteria to sense environmental changes in oxygen tension. The conserved cysteine 265 in the sensor kinase RegB was previously reported to form an intermolecular disulfide bond under oxidizing conditions that converts RegB from an active dimer into an inactive tetramer. In this study, we demon...

متن کامل

Cofactor Binding Protects Flavodoxin against Oxidative Stress

In organisms, various protective mechanisms against oxidative damaging of proteins exist. Here, we show that cofactor binding is among these mechanisms, because flavin mononucleotide (FMN) protects Azotobacter vinelandii flavodoxin against hydrogen peroxide-induced oxidation. We identify an oxidation sensitive cysteine residue in a functionally important loop close to the cofactor, i.e., Cys69....

متن کامل

The redox biochemistry of protein sulfenylation and sulfinylation.

Controlled generation of reactive oxygen species orchestrates numerous physiological signaling events (Finkel, T. (2011) Signal transduction by reactive oxygen species. J. Cell Biol. 194, 7-15). A major cellular target of reactive oxygen species is the thiol side chain (RSH) of Cys, which may assume a wide range of oxidation states (i.e. -2 to +4). Within this context, Cys sulfenic (Cys-SOH) an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • ACS chemical biology

دوره 4 9  شماره 

صفحات  -

تاریخ انتشار 2009