Maximum Total Correntropy Diffusion Adaptation over Networks with Noisy Links

نویسندگان

  • Yicong He
  • Fei Wang
  • Shiyuan Wang
  • Pengju Ren
  • Badong Chen
چکیده

Distributed estimation over networks draws much attraction in recent years. In many situations, due to imperfect information communication among nodes, the performance of traditional diffusion adaptive algorithms such as the diffusion LMS (DLMS) may degrade. To deal with this problem, several modified DLMS algorithms have been proposed. However, these DLMS based algorithms still suffer from biased estimation and are not robust to impulsive link noise. In this paper, we focus on improving the performance of diffusion adaptation with noisy links from two aspects: accuracy and robustness. A new algorithm called diffusion maximum total correntropy (DMTC) is proposed. The new algorithm is theoretically unbiased in Gaussian noise, and can efficiently handle the link noises in the presence of large outliers. The adaptive combination rule is applied to further improve the performance. The stability analysis of the proposed algorithm is given. Simulation results show that the DMTC algorithm can achieve good performance in both Gaussian and non-Gaussian noise environments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the effect of low-quality node observation on learning over incremental adaptive networks

In this paper, we study the impact of low-quality node on the performance of incremental least mean square (ILMS) adaptive networks. Adaptive networks involve many nodes with adaptation and learning capabilities. Low-quality mode in the performance of a node in a practical sensor network is modeled by the observation of pure noise (its observation noise) that leads to an unreliable measurement....

متن کامل

Robust diffusion maximum correntropy criterion algorithm for distributed network estimation

Robust diffusion algorithms based on the maximum correntropy criterion(MCC) are developed to address the distributed networks estimation issue in impulsive(long-tailed) noise environments. The cost functions used in distributed network estimation are in general based on the mean square error (MSE) criterion, which is optimal only when the measurement noise is Gaussian. In non-Gaussian situation...

متن کامل

Partial-Diffusion Least Mean-Square Estimation Over Networks Under Noisy Information Exchange

Partial diffusion scheme is an effective method for reducing computational load and power consumption in adaptive network implementation. The Information is exchanged among the nodes, usually over noisy links. In this paper, we consider a general version of partial-diffusion least-mean-square (PDLMS) algorithm in the presence of various sources of imperfect information exchanges. Like the estab...

متن کامل

Diffusion Adaptation over Networks

Adaptive networks are well-suited to perform decentralized information processing and optimization tasks and to model various types of self-organized and complex behavior encountered in nature. Adaptive networks consist of a collection of agents with processing and learning abilities. The agents are linked together through a connection topology, and they cooperate with each other through local ...

متن کامل

Impacts of the Negative-exponential and the K-distribution modeled FSO turbulent links on the theoretical and simulated performance of the distributed diffusion networks

Merging the adaptive networks with the free space optical (FSO) communication technology is a very interesting field of research because by adding the benefits of this technology, the adaptive networks become more efficient, cheap and secure. This is due to the fact that FSO communication uses unregistered visible light bandwidth instead of the overused radio spectrum. However, in spite of all ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1802.05144  شماره 

صفحات  -

تاریخ انتشار 2018