Lipid flippase modulates olfactory receptor expression and odorant sensitivity in Drosophila.
نویسندگان
چکیده
In Drosophila melanogaster, the male-specific pheromone cVA (11-cis-vaccenyl acetate) functions as a sex-specific social cue. However, our understanding of the molecular mechanisms underlying cVA pheromone transduction and its regulation are incomplete. Using a genetic screen combined with an electrophysiological assay to monitor pheromone-evoked activity in the cVA-sensing Or67d neurons, we identified an olfactory sensitivity factor encoded by the dATP8B gene, the Drosophila homolog of mammalian ATP8B. dATP8B is expressed in all olfactory neurons that express Orco, the odorant receptor coreceptor, and the odorant responses in most Orco-expressing neurons are reduced. Or67d neurons are severely affected, with strongly impaired cVA-induced responses and lacking spontaneous spiking in the mutants. The dATP8B locus encodes a member of the P4-type ATPase family thought to flip aminophospholipids such as phosphatidylserine and phosphatidylethanolamine from one membrane leaflet to the other. dATP8B protein is concentrated in the cilia of olfactory neuron dendrites, the site of odorant transduction. Focusing on Or67d neuron function, we show that Or67d receptors are mislocalized in dATP8B mutants and that cVA responses can be restored to dATP8B mutants by misexpressing a wild-type dATP8B rescuing transgene, by expressing a vertebrate P4-type ATPase member in the pheromone-sensing neurons or by overexpressing Or67d receptor subunits. These findings reveal an unexpected role for lipid translocation in olfactory receptor expression and sensitivity to volatile odorants.
منابع مشابه
The Drosophila melanogaster Phospholipid Flippase dATP8B Is Required for Odorant Receptor Function
The olfactory systems of insects are fundamental to all aspects of their behaviour, and insect olfactory receptor neurons (ORNs) exhibit exquisite specificity and sensitivity to a wide range of environmental cues. In Drosophila melanogaster, ORN responses are determined by three different receptor families, the odorant (Or), ionotropic-like (IR) and gustatory (Gr) receptors. However, the precis...
متن کاملModulation of Olfactory Receptor Neuron Sensitivity by Hunger in Drosophila
Hunger drives animals to search for food, a behavior that is heavily dependent on the olfactory system. The neuronal mechanism by which hunger modulates the behavioral response towards food odor, however, is not well understood. In this study, using a single-fly behavioral assay and single-unit recording, we have demonstrated that starved flies exhibit enhanced attraction towards an attractive ...
متن کاملAdvantage of the Highly Restricted Odorant Receptor Expression Pattern in Chemosensory Neurons of Drosophila
A fundamental molecular feature of olfactory systems is that individual neurons express only one receptor from a large odorant receptor gene family. While numerous theories have been proposed, the functional significance and evolutionary advantage of generating a sophisticated one-receptor-per neuron expression pattern is not well understood. Using the genetically tractable Drosophila melanogas...
متن کاملThe molecular logic of olfaction in Drosophila.
Drosophila fruit flies display robust olfactory-driven behaviors with an olfactory system far simpler than that of vertebrates. Endowed with 1300 olfactory receptor neurons, these insects are able to recognize and discriminate between a large number of distinct odorants. Candidate odorant receptor molecules were identified by complimentary approaches of differential cloning and genome analysis....
متن کاملDrosophila as a focus in olfactory research: mapping of olfactory sensilla by fine structure, odor specificity, odorant receptor expression, and central connectivity.
This review intends to integrate recent data from the Drosophila olfactory system into an up-to-date account of the neuronal basis of olfaction. It focuses on (1) an electron microscopic study that mapped a large proportion of fruitfly olfactory sensilla, (2) large-scale electrophysiological recordings that allowed the classification of the odor response spectra of a complete set of sensilla, (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 111 21 شماره
صفحات -
تاریخ انتشار 2014