Probabilistic Community Discovery Using Hierarchical Latent Gaussian Mixture Model

نویسندگان

  • Haizheng Zhang
  • C. Lee Giles
  • Henry C. Foley
  • John Yen
چکیده

Complex networks exist in a wide array of diverse domains, ranging from biology, sociology, and computer science. These real-world networks, while disparate in nature, often comprise of a set of loose clusters(a.k.a communities), whose members are better connected to each other than to the rest of the network. Discovering such inherent community structures can lead to deeper understanding about the networks and therefore has raised increasing interests among researchers from various disciplines. This paper describes GWNLDA(Generic weighted network-Latent Dirichlet Allocation) model, a hierarchical Bayesian model derived from the widely-received LDA model, for discovering probabilistic community profiles in social networks. In this model, communities are modeled as latent variables and defined as distributions over the social actor space. In addition, each social actor belongs to every community with different probability. This paper also proposes two different network encoding approaches and explores the impact of these two approaches to the community discovery performance. This model is evaluated on two research collaborative networks:CiteSeer and NanoSCI. The experimental results demonstrate that this approach is promising for discovering community structures in large-scale networks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Descriptive Framework for the Field of Data Mining and Knowledge Discovery

s of forty-nine regular papers from PAKDD 2005 [Ho et al. 2005], which were not used in the framework building process, were collected and analyzed to see if they fit in the categories identified by grounded theory. The abstract of each article was analyzed to identify the primary objective(s) the author(s) are addressing. Take the article “Adjusting Mixture Weights of Gaussian Mixture Model vi...

متن کامل

Layered Dynamic Mixture Model for Pattern Discovery in Asynchronous Multi-modal Streams

We propose a layered dynamic mixture model for asynchronous multi-modal fusion for unsupervised pattern discovery in video. The lower layer of the model uses generative temporal structures such as a hierarchical hidden Markov model to convert the audiovisual streams into mid-level labels, it also models the correlations in text with probabilistic latent semantic analysis. The upper layer fuses ...

متن کامل

Adjusting Mixture Weights of Gaussian Mixture Model via Regularized Probabilistic Latent Semantic Analysis

Mixture models, such as Gaussian Mixture Model, have been widely used in many applications for modeling data. Gaussian mixture model (GMM) assumes that data points are generated from a set of Gaussian models with the same set of mixture weights. A natural extension of GMM is the probabilistic latent semantic analysis (PLSA) model, which assigns different mixture weights for each data point. Thu...

متن کامل

IMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL

  Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm.   In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...

متن کامل

­­Image Segmentation using Gaussian Mixture Model

Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm.   In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007