Mapping out emerging network structures in dynamic network models coupled with epidemics
نویسندگان
چکیده
We consider the susceptible infected susceptible (SIS) epidemic on a dynamic network model with addition and deletion of links depending on node status. We analyse the resulting pairwise model using classical bifurcation theory to map out the spectrum of all possible epidemic behaviours. However, the major focus of the chapter is on the evolution and possible equilibria of the resulting networks. Whereas most studies are driven by determining system-level outcomes, e.g., whether the epidemic dies out or becomes endemic, with little regard for the emerging network structure, here, we want to buck this trend by augmenting the system-level results with mapping out of the structure and properties of the resulting networks. We find that depending on parameter values the network can become disconnected and show bistable-like behaviour whereas the endemic steady state sees the emergence of networks with qualitatively different degree distributions. In particular, we observe de-phased oscillations of both prevalence and network degree during which there is role reversal between the level and nature of the connectivity of susceptible and infected nodes. We conclude with an attempt at describing what a potential bifurcation theory for networks would look like. István Z. Kiss Department of Mathematics, School of Mathematical and Physical Sciences, University of Sussex, Falmer, Brighton BN1 9QH, UK, e-mail: [email protected] Luc Berthouze Centre for Computational Neuroscience and Robotics, University of Sussex, Falmer, Brighton, BN1 9QH, UK e-mail: [email protected] Joel C. Miller School of Mathematical Sciences and School of Biological Sciences, Monash University, Clayton, VIC Australia, Monash Academy for Cross and Interdisciplinary Mathematics, and Institute for Disease Modeling, Bellevue, WA USA e-mail: [email protected] Péter L. Simon Institute of Mathematics, Eötvös Loránd University Budapest, and Numerical Analysis, and Large Networks Research Group, Hungarian Academy of Sciences, Hungarye-mail: [email protected]
منابع مشابه
Revenue - Profit Measurement in Data Envelopment Analysis with Dynamic Network Structures: A Relational Model
The correlated models are introduced in this article regarding revenue efficiency and profit efficiency in dynamic network production systems. The proposed models are not only applicable in measuring efficiency of divisional, periodical and overall efficiencies, but recognizing the exact sources of inefficiency with respect to revenue and profit efficiencies. Two numerical examples, consisting ...
متن کاملComparative Study of Static and Dynamic Artificial Neural Network Models in Forecasting of Tehran Stock Exchange
During the recent decades, neural network models have been focused upon by researchers due to their more real performance and on this basis, different types of these models have been used in forecasting. Now, there is a question that which kind of these models has more explanatory power in forecasting the future processes of the stock. In line with this, the present paper made a comparison betw...
متن کاملMalmquist Productivity Index with Dynamic Network Structure
Data envelopment analysis (DEA) measures the relative efficiency of decision making units (DMUs) with multiple inputs and multiple outputs. DEA-based Malmquist productivity index measures the productivity change over time. We propose a dynamic DEA model involving network structure in each period within the framework a DEA. We have previously published the network DEA (NDEA) and the dynamic DEA ...
متن کاملOn the relative efficiency in general network structures
Data Envelopment Analysis (DEA) is an eciency measurement tool for evaluation of similar Decision Making Units (DMUs). In DEA, weights are assigned to inputs and outputs and the absolute eciency score is obtained by the ratio of weighted sum of outputs to weighted sum of inputs. In traditional DEA models, this measure is also equivalent with relative eciency score which evaluates DMUs in compar...
متن کاملDissertation DYNAMIC AND INTERACTING COMPLEX NETWORKS
This thesis employs methods of statistical mechanics and numerical simulations to study some aspects of dynamic and interacting complex networks. The mapping of various social and physical phenomena to complex networks has been a rich field in the past few decades. Subjects as broad as petroleum engineering, scientific collaborations, and the structure of the internet have all been analyzed in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017