Graphical models, causal inference, and econometric models
نویسنده
چکیده
A graphical model is a graph that represents a set of conditional independence relations among the vertices (random variables). The graph is often given a causal interpretation as well. I describe how graphical causal models can be used in an algorithm for constructing partial information about causal graphs from observational data that is reliable in the large sample limit, even when some of the variables in the causal graph are unmeasured. I also describe an algorithm for estimating from observational data (in some cases) the total effect of a given variable on a second variable, and theoretical insights into fundamental limitations on the possibility of certain causal inferences by any algorithm whatsoever, and regardless of sample size.
منابع مشابه
Theory-Based Causal Inference
People routinely make sophisticated causal inferences unconsciously, effortlessly, and from very little data – often from just one or a few observations. We argue that these inferences can be explained as Bayesian computations over a hypothesis space of causal graphical models, shaped by strong top-down prior knowledge in the form of intuitive theories. We present two case studies of our approa...
متن کاملCausal Graphical Models with Latent Variables: Learning and Inference
Several paradigms exist for modeling causal graphical models for discrete variables that can handle latent variables without explicitly modeling them quantitatively. Applying them to a problem domain consists of different steps: structure learning, parameter learning and using them for probabilistic or causal inference. We discuss two well-known formalisms, namely semi-Markovian causal models a...
متن کاملTitle Methods for Graphical Models and Causal Inference
March 19, 2015 Version 2.0-10 Date 2015-03-18 Author Diego Colombo, Alain Hauser, Markus Kalisch, Martin Maechler Maintainer Markus Kalisch Title Methods for Graphical Models and Causal Inference Description Functions for causal structure learning and causal inference using graphical models. The main algorithms for causal structure learning are PC (for observational ...
متن کاملWhat Can Causal Networks Tell Us about Metabolic Pathways?
Graphical models describe the linear correlation structure of data and have been used to establish causal relationships among phenotypes in genetic mapping populations. Data are typically collected at a single point in time. Biological processes on the other hand are often non-linear and display time varying dynamics. The extent to which graphical models can recapitulate the architecture of an ...
متن کاملOn Measurement Bias in Causal Inference
This paper addresses the problem of measurement errors in causal inference and highlights several algebraic and graphical methods for eliminating systematic bias induced by such errors. In particulars, the paper discusses the control of partially observable confounders in parametric and non parametric models and the computational problem of obtaining biasfree effect estimates in such models.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005