Novel strategy for inhibiting viral entry by use of a cellular receptor-plant virus chimera.
نویسندگان
چکیده
The plant virus cowpea mosaic virus (CPMV) has recently been developed as a biomolecular platform to display heterologous peptide sequences. Such CPMV-peptide chimeras can be easily and inexpensively produced in large quantities from experimentally infected plants. This study utilized the CPMV chimera platform to create an antiviral against measles virus (MV) by displaying a peptide known to inhibit MV infection. This peptide sequence corresponds to a portion of the MV binding site on the human MV receptor CD46. The CPMV-CD46 chimera efficiently inhibited MV infection of HeLa cells in vitro, while wild-type CPMV did not. Furthermore, CPMV-CD46 protected mice from mortality induced by an intracranial challenge with MV. Our results indicate that the inhibitory CD46 peptide expressed on the surface of CPMV retains virus-binding activity and is capable of inhibiting viral entry both in vitro and in vivo. The CD46 peptide presented in the context of CPMV is also up to 100-fold more effective than the soluble CD46 peptide at inhibiting MV infection in vitro. To our knowledge, this study represents the first utilization of a plant virus chimera as an antiviral agent.
منابع مشابه
New Anti-Influenza Agents: Targeting the Virus Entry and Genome Transcription
Introduction: The emergence and spread of the pandemic H1N1 influenza virus in 2009 indicates a limitation in the strategy to control the infection, despite a long-established vaccination programme and approved antivirals. Production the proper vaccine against influenza is difficult due to the genetic recombination of virus in the event of pandemic and co-circulation of drug-resistance variants...
متن کاملتغییرات ژنتیکی ویروس و فرار از سامانه ایمنی، چالشهای پیشرو علیه آنفلوآنزا: مقاله مروری
The spread of influenza viruses in multiple bird and mammalian species is a worldwide serious threat to human and animal populations' health and raise major concern for ongoing pandemic in humans. Direct transmission of the avian viruses which have sialic acid specific receptors similar to human influenza viruses are a warning to the emergence of a new mutant strain that is likely to share mole...
متن کاملAmmonium Chloride as a Potential Candidate for the Treatment and Controlling of Covid-19
Coronaviruses, pathogens with a zoonotic potential, are positive sense single-stranded RNA viruses. SARS Coronavirus-2, the cause of Covid-19 infection, is from the betacoronavirinea subfamily, which has close genomic and proteomic similarity to SARS Coronavirus-1(1). Given the genomic proximity of these two viruses, studies on SARS Coronavirus-1 can be used to control or detect SARS Coronaviru...
متن کاملNiemann-Pick C1 (NPC1)/NPC1-like1 Chimeras Define Sequences Critical for NPC1’s Function as a Filovirus Entry Receptor
We recently demonstrated that Niemann-Pick C1 (NPC1), a ubiquitous 13-pass cellular membrane protein involved in lysosomal cholesterol transport, is a critical entry receptor for filoviruses. Here we show that Niemann-Pick C1-like1 (NPC1L1), an NPC1 paralog and hepatitis C virus entry factor, lacks filovirus receptor activity. We exploited the structural similarity between NPC1 and NPC1L1 to co...
متن کاملMolecular docking study of anti-viral FDA-approved drugs as novel entry and replication Ebola viral inhibitors
Background & Objective: Because of the reported high ability of virulence and the lack of appropriate drug of Ebola virus during the last decades, many investigations have been accomplished regarding discovery and the introduction of anti-Ebola drugs. The aim of this research was the bioinformatical study of entry and replication of Ebola viral inhibition by drug repurposing. Materials & Method...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of virology
دوره 76 9 شماره
صفحات -
تاریخ انتشار 2002