Lower Bounds for Approximating Graph Parameters via Communication Complexity

نویسندگان

  • Talya Eden
  • Will Rosenbaum
چکیده

In a celebrated work, Blais, Brody, and Matulef [5] developed a technique for proving property testing lower bounds via reductions from communication complexity. Their work focused on testing properties of functions, and yielded new lower bounds as well as simplified analyses of known lower bounds. Here, we take a further step in generalizing the methodology of [5] to analyze the query complexity of graph parameter estimation problems. In particular, our technique decouples the lower bound arguments from the representation of the graph, allowing it to work with any query type. We illustrate our technique by providing new simpler proofs of previously known tight lower bounds for the query complexity of several graph problems: estimating the number of edges in a graph, sampling edges from an almost-uniform distribution, estimating the number of triangles (and more generally, r-cliques) in a graph, and estimating the moments of the degree distribution of a graph. We also prove new lower bounds for estimating the edge connectivity of a graph and estimating the number of instances of any fixed subgraph in a graph. We show that the lower bounds for estimating the number of triangles and edge connectivity also hold in a strictly stronger computational model that allows access to uniformly random edge samples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error bounds in approximating n-time differentiable functions of self-adjoint operators in Hilbert spaces via a Taylor's type expansion

On utilizing the spectral representation of selfadjoint operators in Hilbert spaces, some error bounds in approximating $n$-time differentiable functions of selfadjoint operators in Hilbert Spaces via a Taylor's type expansion are given.

متن کامل

Lower bounds on the signed (total) $k$-domination number

Let $G$ be a graph with vertex set $V(G)$. For any integer $kge 1$, a signed (total) $k$-dominating functionis a function $f: V(G) rightarrow { -1, 1}$ satisfying $sum_{xin N[v]}f(x)ge k$ ($sum_{xin N(v)}f(x)ge k$)for every $vin V(G)$, where $N(v)$ is the neighborhood of $v$ and $N[v]=N(v)cup{v}$. The minimum of the values$sum_{vin V(G)}f(v)$, taken over all signed (total) $k$-dominating functi...

متن کامل

Lower Bounds Using Dual Polynomials ∗

Representations of Boolean functions by real polynomials play an important role in complexity theory. Typically, one is interested in the least degree of a polynomial p(x 1 ,. .. , x n) that approximates or sign-represents a given Boolean function f (x 1 ,. .. , x n). This article surveys a new and growing body of work in communication complexity that centers around the dual objects, i.e., poly...

متن کامل

Communication Lower Bounds Using Dual Polynomials

Representations of Boolean functions by real polynomials play an important role in complexity theory. Typically, one is interested in the least degree of a polynomial p(x1, . . . , xn) that approximates or sign-represents a given Boolean function f (x1, . . . , xn). This article surveys a new and growing body of work in communication complexity that centers around the dual objects, i.e., polyno...

متن کامل

Maximum Matchings in Dynamic Graph Streams and the Simultaneous Communication Model

We study the problem of finding an approximate maximum matching in two closely related computational models, namely, the dynamic graph streaming model and the simultaneous multi-party communication model. In the dynamic graph streaming model, the input graph is revealed as a stream of edge insertions and deletions, and the goal is to design a small space algorithm to approximate the maximum mat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1709.04262  شماره 

صفحات  -

تاریخ انتشار 2017