Optical characterization of two-dimensional photonic crystal cavities with indium arsenide quantum dot emitters

نویسندگان

  • Tomoyuki Yoshie
  • Axel Scherer
  • Hao Chen
  • Diana Huffaker
  • Dennis Deppe
چکیده

We have characterized the modes within two-dimensional photonic crystal nanocavities with self-organized indium arsenide quantum dots as an active material. Highly localized donor mode resonances with 3 to 5 nm linewidth were observed when spatially selective optical pumping the cavities. These modes could be lithographically tuned from 1100 to 1300 nm. Other, more extended modes, were also characterized and exhibited narrower resonance linewidths ranging from 0.6 to 2 nm. © 2001 American Institute of Physics. @DOI: 10.1063/1.1377851#

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optical field enhancement factor of Silicon and indium phosphide nano-cavities

Nano cavities based on silicon and indium phosphide materials have been comparedin this study, considering field intensity enhancement factor. The results of FDTD based simulations declare that the Si nano-cavity improves confined optical field about 7.7 times higher than the InP based nano-cavity. The introduced dielectric nano-cavities support resonance wavelength at about λ=1.55 μm.

متن کامل

Graphene-based photonic crystal to steer giant Faraday rotation

Related Articles All-optical tuning of a quantum dot in a coupled cavity system Appl. Phys. Lett. 100, 231107 (2012) Cherenkov high-order harmonic generation by multistep cascading in χ(2) nonlinear photonic crystal Appl. Phys. Lett. 100, 221103 (2012) Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics Appl. Phys. Lett. 100, 181110 (2012) Control of absorptio...

متن کامل

Broadband frequency conversion and shaping of single photons emitted from a nonlinear cavity.

Much recent effort has focused on coupling individual quantum emitters to optical microcavities in order to produce single photons on demand, enable single-photon optical switching, and implement functional nodes of a quantum network. Techniques to control the bandwidth and frequency of the outgoing single photons are of practical importance, allowing direct emission into telecommunications wav...

متن کامل

Optical positioning of single-photon emitters within engineered quantum photonic devices

Single solid-state quantum emitters are promising ingredients for quantum information protocols relying on the storage, manipulation, and transmission of the information encoded in single photons through optical cavities and waveguides. Epitaxially grown, self-assembled InAs/GaAs quantum dots are a particularly promising system. However, optimal operation of such devices requires precise positi...

متن کامل

Design of photonic microcavities in hexagonal boron nitride

We propose and design photonic crystal cavities (PCCs) in hexagonal boron nitride (hBN) for diverse photonic and quantum applications. Two dimensional (2D) hBN flakes contain quantum emitters which are ultra-bright and photostable at room temperature. To achieve optimal coupling of these emitters to optical resonators, fabrication of cavities from hBN is therefore required to maximize the overl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001