Heat transport and the large-scale circulation in rotating turbulent Rayleigh–Bénard convection

نویسندگان

  • JIN-QIANG ZHONG
  • GUENTER AHLERS
چکیده

Measurements of the Nusselt number Nu and of properties of the large-scale circulation (LSC) for turbulent Rayleigh–Bénard convection are presented in the presence of rotation about a vertical axis at angular speeds 0 Ω <∼ 2 rad s−1. The sample chamber was cylindrical with a height equal to the diameter, and the fluid contained in it was water. The LSC was studied by measuring sidewall temperatures as a function of azimuthal position. The measurements covered the Rayleighnumber range 3× 10 <∼Ra <∼ 2× 10, the Prandtl-number range 3.0<∼Pr <∼ 6.4 and the Rossby-number range 0 (1/Ro∝Ω)<∼ 20. At modest 1/Ro, we found an enhancement of Nu due to Ekman-vortex pumping by as much as 20%. As 1/Ro increased from zero, this enhancement set in discontinuously at and grew above 1/Roc. The value of 1/Roc varied from about 0.48 at Pr =3 to about 0.35 at Pr =6.2. At sufficiently large 1/Ro (large rotation rates), Nu decreased again, due to the Taylor–Proudman (TP) effect, and reached values well below its value without rotation. The maximum enhancement increased with increasing Pr and decreasing Ra and, we believe, was determined by a competition between the Ekman enhancement and the TP depression. The temperature signature along the sidewall of the LSC was detectable by our method up to 1/Ro 1. The frequency of cessations α of the LSC grew dramatically with increasing 1/Ro, from about 10−5 s−1 at 1/Ro=0 to about 2× 10−4 s−1 at 1/Ro=0.25. A discontinuous further increase of α, by about a factor of 2.5, occurred at 1/Roc. With increasing 1/Ro, the time-averaged and azimuthally averaged vertical thermal gradient along the sidewall first decreased and then increased again, with a minimum somewhat below 1/Roc. The Reynolds number of the LSC, determined from oscillations of the time correlation functions of the sidewall temperatures, was constant within our resolution for 1/Ro<∼ 0.3 and then decreased with increasing 1/Ro. The retrograde rotation rate of the LSC circulation plane exhibited complex behaviour as a function of 1/Ro even at small rotation rates corresponding to 1/Ro< 1/Roc.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermal evidence for Taylor columns in turbulent rotating Rayleigh-Bénard convection.

We investigate flow structures in rotating Rayleigh-Bénard convection experiments in water using thermal measurements. We focus on correlations between time series measurements of temperature in the top and bottom boundaries. Distinct anticorrelations are observed for rapidly rotating convection, which are argued to attest to heat transport by convective Taylor columns. In support of this argum...

متن کامل

Transitions between turbulent states in rotating Rayleigh-Bénard convection.

Weakly rotating turbulent Rayleigh-Bénard convection was studied experimentally and numerically. With increasing rotation and large enough Rayleigh number a supercritical bifurcation from a turbulent state with nearly rotation-independent heat transport to another with enhanced heat transfer is observed at a critical inverse Rossby number 1/Roc approximately 0.4. The strength of the large-scale...

متن کامل

Scaling laws in turbulent Rayleigh-Bénard convection under different geometry

A systematic study of turbulent Rayleigh-Bénard convection is carried out in two horizontal cylindrical cells of different lengths filled with water. Global heat transport and local temperature and velocity measurements are made over varying Rayleigh numbers Ra. The scaling behavior of the measured Nusselt number Nu(Ra) and the Reynolds number Re(Ra) associated with the large-scale circulation ...

متن کامل

Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection

The progress in our understanding of several aspects of turbulent Rayleigh-Bénard convection is reviewed. The focus is on the question of how the Nusselt number and the Reynolds number depend on the Rayleigh number Ra and the Prandtl number Pr, and on how the thicknesses of the thermal and the kinetic boundary layers scale with Ra and Pr. Non-Oberbeck-Boussinesq effects and the dynamics of the ...

متن کامل

Heat transfer & large-scale dynamics in turbulent Rayleigh-Bénard convection

The progress in our understanding of several aspects of turbulent Rayleigh-Bénard convection is reviewed. The focus is on the question of how the Nusselt number and the Reynolds number depend on the Rayleigh number Ra and the Prandtl number Pr, and on how the thicknesses of the thermal and the kinetic boundary layers scale with Ra and Pr. Non-Oberbeck-Boussinesq effects and the dynamics of the ...

متن کامل

Large Scale Circulation and boundary layer structure in a rough Rayleigh-Bénard cell filled with water

We report Particle Image Velocimetry of the Large Scale Circulation and the viscous boundary layer in turbulent thermal convection. We use two parallelepipedic Rayleigh-Bénard cells with a top smooth plate. The first one has a rough bottom plate and the second one has a smooth one so we compare the rough-smooth and the smooth-smooth configurations. The dimensions of the cell allow to consider a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010