Learning Pose Grammar to Encode Human Body Configuration for 3D Pose Estimation
نویسندگان
چکیده
In this paper, we propose a knowledge-guided pose grammar network to tackle the problem of 3D human pose estimation. Our model directly takes 2D poses as inputs and learns the generalized 2D-3D mapping function, which renders high applicability. The proposed network consists of a base network which efficiently captures pose-aligned features and a hierarchy of Bidirectional RNNs on top of it to explicitly incorporate a set of knowledge (e.g., kinematics, symmetry, coordination) and thus enforce high-level constraints over human poses. In learning, we develop a pose-guided sample simulator to augment training samples in virtual camera views, which further improves the generalization ability of our model. We validate our method on public 3D human pose benchmarks and propose a new evaluation protocol working on cross-view setting to verify the generalization ability of different methods. We empirically observe that most state-ofthe-arts face difficulty under such setting while our method obtains superior performance.
منابع مشابه
تخمین چنددوربینی حالت سه بعدی انسان با برازش افکنش مدل اسکلت سه بعدی مفصل دار در تصاویر سایه نما
Automatic capture and analysis of human motion, based on images or video is important issue in computer vision due to the vast number of applications in animation, surveillance, biomechanics, Human Computer Interaction, entertainment and game industry. In these applications, it is clear that 3D human pose estimation is an essential part. Therefore, its accuracy has a great effect on the perform...
متن کاملConditional Models for 3d Human Pose Estimation
OF THE DISSERTATION Conditional Models for 3D Human Pose Estimation by ATUL KANAUJIA Dissertation Director: Dimitris Metaxas Human 3d pose estimation from monocular sequence is a challenging problem, owing to highly articulated structure of human body, varied anthropometry, self occlusion, depth ambiguities and large variability in the appearance and background in which humans may appear. Conve...
متن کاملAttribute And-Or Grammar for Joint Parsing of Human Attributes, Part and Pose
This paper presents an attribute and-or grammar (A-AOG) model for jointly inferring human body pose and human attributes in a parse graph with attributes augmented to nodes in the hierarchical representation. In contrast to other popular methods in the current literature that train separate classifiers for poses and individual attributes, our method explicitly represents the decomposition and a...
متن کاملEvaluation of Deep Learning based Pose Estimation for Sign Language
Human body pose estimation and hand detection being the prerequisites for sign language recognition(SLR), are both crucial and challenging tasks in Computer Vision and Machine Learning. There are many algorithms to accomplish these tasks for which the performance measures need to be evaluated for body posture recognition on a sign language dataset, that would serve as a baseline to provide impo...
متن کاملHuman Pose Estimation in Vision Networks Via Distributed Local Processing and Nonparametric Belief Propagation
In this paper we propose a self-initialized method for human pose estimation from multiple cameras. A graphical model for the articulated body is defined through explicit kinematic and structural constraints, which allows for any plausible body configuration and avoids learning the joint distributions from training data. Nonparametric belief propagation (NBP) is used to infer the marginal distr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017