Staurosporine-induced apoptosis of cultured rat hippocampal neurons involves caspase-1-like proteases as upstream initiators and increased production of superoxide as a main downstream effector.

نویسندگان

  • A J Krohn
  • E Preis
  • J H Prehn
چکیده

We induced apoptosis in cultured rat hippocampal neurons by exposure to the protein kinase inhibitor staurosporine (30 nM, 24 hr). Treatment with the antioxidant (+/-)-alpha-tocopherol (100 microM) or the superoxide dismutase-mimetic manganese tetrakis (4-benzoyl acid) porphyrin (1 microM) significantly reduced staurosporine-induced cell death. Using hydroethidine-based digital videomicroscopy, we observed a significant increase in intracellular superoxide production that peaked 6-8 hr into the staurosporine exposure. This increase occurred in the absence of gross mitochondrial depolarization monitored with the voltage-sensitive probe tetramethylrhodamine ethyl ester. We then prepared extracts from staurosporine-treated hippocampal neurons and monitored cleavage of acetyl-Tyr-Val-Ala-Asp-aminomethyl-coumarin and acetyl-Asp-Glu-Val-Asp-AMC, fluorogenic substrates for caspase-1-like and caspase-3-like proteases, respectively. Staurosporine caused a significant increase in caspase-1-like activity that preceded intracellular superoxide production and reached a maximum after 30 min. Caspase-3-like activity paralleled intracellular superoxide production, with peak activity seen after 8 hr. Treatment with the corresponding caspase-3-like protease inhibitor acetyl-Asp-Glu-Val-Asp-aldehyde (10 microM) prevented the increase in caspase-3-like activity and staurosporine-induced nuclear fragmentation, but failed to prevent the rise in superoxide production and subsequent cell death. In contrast, treatment with caspase-1-like protease inhibitors reduced both superoxide production and cell death. Of note, antioxidants prevented superoxide production, caspase-3-like protease activity, and cell death even when added 4 hr after the onset of the staurosporine exposure. These results suggest a scenario of an early, caspase-1-like activity followed by a delayed intracellular superoxide production that mediates staurosporine-induced cell death of cultured rat hippocampal neurons.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hippocampal Neurons in Culture

We investigated the potential role of different proteases in the death of cultured rat hippocampal pyramidal neurons induced by /3-amyloid(A~3)(25—35). Both A/1(25—35)and staurosporine-induced death of these neurons appeared to involve apoptosis, as indicated using Hoechst 33342 and terminal dUDP nick end labeling staining, whereas NMDA-induced death appeared more complex. Two irreversible inhi...

متن کامل

Formaldehyde suppresses neuronal apoptosis via inhibition of outward K(+) currents in rat hippocampus.

Formaldehyde (FA) is widely present in the environment, and is also a mammalian metabolite. However, its biological role has not been well understood. Here, we show that FA plays an anti-apoptotic role in cultured hippocampal neurons: FA suppressed staurosporine-induced neuronal apoptosis and inhibited the activity of apoptosis-associated caspase-3/7 proteases in a concentration-dependent manne...

متن کامل

Blockade of adenosine A(2A) receptors prevents staurosporine-induced apoptosis of rat hippocampal neurons.

Since adenosine A(2A) receptor (A(2A)Rs) blockade protects against noxious brain insults involving apoptosis, we directly tested if A(2A)R blockade prevents apoptosis induced by staurosporine (STS). Exposure of rat hippocampal neurons to STS (30 nM, 24 h) decreased neuronal viability while increasing the number apoptotic-like neurons and de-localizing mitochondria and cytochrome c immunoreactiv...

متن کامل

Delayed mitochondrial dysfunction in excitotoxic neuron death: cytochrome c release and a secondary increase in superoxide production.

An increased production of superoxide has been shown to mediate glutamate-induced neuron death. We monitored intracellular superoxide production of hippocampal neurons during and after exposure to the glutamate receptor agonist NMDA (300 microm). During a 30 min NMDA exposure, intracellular superoxide production increased significantly and remained elevated for several hours after wash-out of N...

متن کامل

Activation of calpain I converts excitotoxic neuron death into a caspase-independent cell death.

Glutamate receptor overactivation contributes to neuron death after stroke, trauma, and epileptic seizures. Exposure of cultured rat hippocampal neurons to the selective glutamate receptor agonist N-methyl-d-aspartate (300 microm, 5 min) or to the apoptosis-inducing protein kinase inhibitor staurosporine (300 nm) induced a delayed neuron death. In both cases, neuron death was preceded by the mi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 18 20  شماره 

صفحات  -

تاریخ انتشار 1998