Zac1 regulates cell cycle arrest in neuronal progenitors via Tcf4.
نویسندگان
چکیده
Imprinted genes play a critical role in brain development and mental health, although the underlying molecular and cellular mechanisms remain incompletely understood. The family of basic helix-loop-helix (bHLH) proteins directs the proliferation, differentiation, and specification of distinct neuronal progenitor populations. Here, we identified the bHLH factor gene Tcf4 as a direct target gene of Zac1/Plagl1, a maternally imprinted transcriptional regulator, during early neurogenesis. Zac1 and Tcf4 expression levels concomitantly increased during neuronal progenitor differentiation; moreover, Zac1 interacts with two cis-regulatory elements in the Tcf4 gene locus, and these elements together confer synergistic activation of the Tcf4 gene. Tcf4 upregulation enhances the expression of the cyclin-dependent kinase inhibitor gene p57(Kip2), a paternally imprinted Tcf4 target gene, and increases the number of cells in G1 phase. Overall, we show that Zac1 controls cell cycle arrest function in neuronal progenitors through induction of p57(Kip2) via Tcf4 and provide evidence for cooperation between imprinted genes and a bHLH factor in early neurodevelopment.
منابع مشابه
Regulation of apoptosis and cell cycle arrest by Zac1, a novel zinc finger protein expressed in the pituitary gland and the brain.
The proliferation rate of a cell population reflects a balance between cell division, cell cycle arrest, differentiation and apoptosis. The regulation of these processes is central to development and tissue homeostasis, whereas dysregulation may lead to overt pathological outcomes, notably cancer and neurodegenerative disorders. We report here the cloning of a novel zinc finger protein which re...
متن کاملExpression pattern of Zac1 mouse gene, a new zinc-finger protein that regulates apoptosis and cellular cycle arrest, in both adult brain and along development
Using in situ hybridization, we analyzed the expression pattern of the Zac1 gene in mouse brain during the embryonic and postnatal development. Zac1 is a new gene that regulates extensive apoptosis and cell cycle arrest through unrelated pathways. At embryonic stages, strong expression was observed in brain areas with active proliferation (ventricular zone and numerous neuroepithelius) and in n...
متن کاملGene expression pattern Expression pattern of Zac1 mouse gene, a new zinc-finger protein that regulates apoptosis and cellular cycle arrest, in both adult brain and along development
Using in situ hybridization, we analyzed the expression pattern of the Zac1 gene in mouse brain during the embryonic and postnatal development. Zac1 is a new gene that regulates extensive apoptosis and cell cycle arrest through unrelated pathways. At embryonic stages, strong expression was observed in brain areas with active proliferation (ventricular zone and numerous neuroepithelius) and in n...
متن کاملExtra-cell cycle regulatory functions of cyclin-dependent kinases (CDK) and CDK inhibitor proteins contribute to brain development and neurological disorders
In developing brains, neural progenitors exhibit cell cycle-dependent nuclear movement within the ventricular zone [interkinetic nuclear migration (INM)] and actively proliferate to produce daughter progenitors and/or neurons, whereas newly generated neurons exit from the cell cycle and begin pial surface-directed migration and maturation. Dysregulation of the balance between the proliferation ...
متن کاملTranscriptional Regulation of Neuronal Differentiation in the Developing Cns
The central nervous system (CNS) is responsible for our intellectual and cognitive functions and it comprises the brain and spinal cord. Generation of the CNS occurs during embryonic development from the neural tube that initially consist of a pool of immature progenitors that will give rise to all the neurons in the brain and spinal cord. CNS development is a highly coordinated process and any...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular and cellular biology
دوره 34 6 شماره
صفحات -
تاریخ انتشار 2014