Co-Training for Cross-Lingual Sentiment Classification
نویسنده
چکیده
The lack of Chinese sentiment corpora limits the research progress on Chinese sentiment classification. However, there are many freely available English sentiment corpora on the Web. This paper focuses on the problem of cross-lingual sentiment classification, which leverages an available English corpus for Chinese sentiment classification by using the English corpus as training data. Machine translation services are used for eliminating the language gap between the training set and test set, and English features and Chinese features are considered as two independent views of the classification problem. We propose a cotraining approach to making use of unlabeled Chinese data. Experimental results show the effectiveness of the proposed approach, which can outperform the standard inductive classifiers and the transductive classifiers.
منابع مشابه
Bilingual Co-Training for Sentiment Classification of Chinese Product Reviews
The lack of reliable Chinese sentiment resources limits research progress on Chinese sentiment classification. However, there are many freely available English sentiment resources on the Web. This article focuses on the problem of cross-lingual sentiment classification, which leverages only available English resources for Chinese sentiment classification. We first investigate several basic meth...
متن کاملCross-lingual sentiment classification: Similarity discovery plus training data adjustment
The performance of cross-lingual sentiment classification is sharply limited by the language gap, which means that each language has its own ways to express sentiments. Many methods have been designed to transmit sentiment information across languages by making use of machine translation, parallel corpora, auxiliary unlabeled samples and other resources. In this paper, a new approach is propose...
متن کاملActive Learning for Cross-Lingual Sentiment Classification
Cross-lingual sentiment classification aims to predict the sentiment orientation of a text in a language (named as the target language) with the help of the resources from another language (named as the source language). However, current cross-lingual performance is normally far away from satisfaction due to the huge difference in linguistic expression and social culture. In this paper, we sugg...
متن کاملA Subspace Learning Framework for Cross-Lingual Sentiment Classification with Partial Parallel Data
Cross-lingual sentiment classification aims to automatically predict sentiment polarity (e.g., positive or negative) of data in a label-scarce target language by exploiting labeled data from a label-rich language. The fundamental challenge of cross-lingual learning stems from a lack of overlap between the feature spaces of the source language data and that of the target language data. To addres...
متن کاملAspect-Level Cross-lingual Sentiment Classification with Constrained SMT
Most cross-lingual sentiment classification (CLSC) research so far has been performed at sentence or document level. Aspect-level CLSC, which is more appropriate for many applications, presents the additional difficulty that we consider subsentential opinionated units which have to be mapped across languages. In this paper, we extend the possible cross-lingual sentiment analysis settings to asp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009