Whole-food diet worsened cognitive dysfunction in an Alzheimer's disease mouse model
نویسندگان
چکیده
Food combinations have been associated with lower incidence of Alzheimer's disease. We hypothesized that a combination whole-food diet containing freeze-dried fish, vegetables, and fruits would improve cognitive function in TgCRND8 mice by modulating brain insulin signaling and neuroinflammation. Cognitive function was assessed by a comprehensive battery of tasks adapted to the Morris water maze. Unexpectedly, a "Diet × Transgene" interaction was observed in which transgenic animals fed the whole-food diet exhibited even worse cognitive function than their transgenic counterparts fed the control diet on tests of spatial memory (p < 0.01) and strategic rule learning (p = 0.034). These behavioral deficits coincided with higher hippocampal gene expression of tumor necrosis factor-α (p = 0.013). There were no differences in cortical amyloid-β peptide species according to diet. These results indicate that a dietary profile identified from epidemiologic studies exacerbated cognitive dysfunction and neuroinflammation in a mouse model of familial Alzheimer's disease. We suggest that normally adaptive cellular responses to dietary phytochemicals were impaired by amyloid-beta deposition leading to increased oxidative stress, neuroinflammation, and behavioral deficits.
منابع مشابه
Cinnamaldehyde attenuates dopaminergic neuronal loss in substantia nigra and induces midbrain catalase activity in a mouse model of Parkinson’s disease
Background and Objective: Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease that affects 3% of the population. PD involves a progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc) and subsequent loss of dopamine. Dopamine depletion leads to movement dysfunction and is accompanied with tremor, rigid muscle...
متن کاملFormulation of a Medical Food Cocktail for Alzheimer's Disease: Beneficial Effects on Cognition and Neuropathology in a Mouse Model of the Disease
BACKGROUND Dietary supplements have been extensively studied for their beneficial effects on cognition and AD neuropathology. The current study examines the effect of a medical food cocktail consisting of the dietary supplements curcumin, piperine, epigallocatechin gallate, α-lipoic acid, N-acetylcysteine, B vitamins, vitamin C, and folate on cognitive functioning and the AD hallmark features a...
متن کاملModifications of Hippocampal Circuits and Early Disruption of Adult Neurogenesis in the Tg2576 Mouse Model of Alzheimer’s Disease
At advanced stages of Alzheimer's disease, cognitive dysfunction is accompanied by severe alterations of hippocampal circuits that may largely underlie memory impairments. However, it is likely that anatomical remodeling in the hippocampus may start long before any cognitive alteration is detected. Using the well-described Tg2576 mouse model of Alzheimer's disease that develops progressive age-...
متن کاملIntracerebroventricular Infusion of Angiotensin-(1-7) Ameliorates Cognitive Impairment and Memory Dysfunction in a Mouse Model of Alzheimer's Disease.
This work was performed to test our hypothesis that angiotensin-(1-7) can ameliorate cognitive impairment and cerebrovascular reactivity in 5XFAD mice, a useful model of Alzheimer's disease. 5XFAD mice received intracerebroventricular infusion of (1) vehicle, (2) angiotensin-(1-7), or (3) angiotensin-(1-7)+A779, a specific Mas receptor antagonist, for 4 weeks. Angiotensin-(1-7), through Mas rec...
متن کاملCholinergic neuropathology in a mouse model of Alzheimer's disease
Transgenic mice over-expressing mutant human amyloid precursor protein (PDAPP mouse) develop several Alzheimer’s disease (AD)-like lesions including an age-related accumulation of amyloid-?-containing neuritic plaques. Although aged, heterozygous PDAPP mice also exhibit synaptic and glial cell changes, that is characteristic of AD pathology, no evidence of neurodegeneration has been observed. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurobiology of Aging
دوره 36 شماره
صفحات -
تاریخ انتشار 2015