Hepatic overexpression of a dominant negative form of raptor enhances Akt phosphorylation and restores insulin sensitivity in K/KAy mice.

نویسندگان

  • Yuko Koketsu
  • Hideyuki Sakoda
  • Midori Fujishiro
  • Akifumi Kushiyama
  • Yasushi Fukushima
  • Hiraku Ono
  • Motonobu Anai
  • Takako Kikuchi
  • Takeshi Fukuda
  • Hideaki Kamata
  • Nanao Horike
  • Yasunobu Uchijima
  • Hiroki Kurihara
  • Tomoichiro Asano
چکیده

Several serine/threonine kinases reportedly phosphorylate serine residues of IRS-1 and thereby induce insulin resistance. In this study, to investigate the effect of mTOR/raptor on insulin signaling and metabolism in K/KAy mice with genetic obesity-associated insulin resistance, a dominant negative raptor, COOH-terminally deleted raptor (raptor-DeltaC(T)), was overexpressed in the liver via injection of its adenovirus into the circulation. Hepatic raptor-DeltaC(T) expression levels were 1.5- to 4-fold that of endogenously expressed raptor. Glucose tolerance in raptor-DeltaC(T)-overexpressing mice improved significantly compared with that of LacZ-overexpressing mice. Insulin-induced activation of p70S6 kinase (p70(S6k)) was significantly suppressed in the livers of raptor-DeltaC(T) overexpressing mice. In addition, insulin-induced IRS-1, Ser(307), and Ser(636/639) phosphorylations were significantly suppressed in the raptor-DeltaC(T)-overexpressing liver, whereas tyrosine phosphorylation of IRS-1 was increased. PI 3-kinase activation in response to insulin stimulation was increased approximately twofold, and Akt phosphorylation was clearly enhanced under both basal and insulin-stimulated conditions in the livers of raptor-DeltaC(T) mice. Thus, our data indicate that suppression of the mTOR/p70(S6k) pathway leads to improved glucose tolerance in K/KAy mice. These observations may contribute to the development of novel antidiabetic agents.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تغییر بیان ژن SHIP2 (SH2 domain containing inositol 5-phosphatase) با استفاده از سیستم رتروویروس در سلول های کبدی HepG2

Introduction: Dyslypydmy is one of the risk factors of cardiovascular disease in diabetics. Dyslypydmy is diagnosed by increasing in plasma triglyceride density, decreasing HDL Cholesterol, and increasing LDL especially small LDL. Several evidences from human and animal studies indicate that the role of insulin resistance is a major cause of hypertrigly ceridemia in diabetics and people with me...

متن کامل

Expression of a dominant negative SHP-2 in transgenic mice induces insulin resistance.

To elucidate the roles of SHP-2, we generated transgenic (Tg) mice expressing a dominant negative mutant lacking protein tyrosine phosphatase domain (DeltaPTP). On examining two lines of Tg mice identified by Southern blot, the transgene product was expressed in skeletal muscle, liver, and adipose tissues, and insulin-induced association of insulin receptor substrate 1 with endogenous SHP-2 was...

متن کامل

O-7: Insulin Exerts a Prosurvival Effect on Human Spermatozoa via Mechanisms That Involve the Stimulation of Akt Phosphorylation

Background: The purpose of this study was to examine the impact of Insulin (INS) on human sperm function, in light of a recent proteomic analysis indicating that these cells express the INS receptor (INSR). Materials and Methods: We used Western blot and Immunocytochemical analyses. Results: Immunocytochemical analyses confirmed the presence of INSR in human spermatozoa and localized this recep...

متن کامل

Inhibition of PTP1B Restores IRS1-Mediated Hepatic Insulin Signaling in IRS2-Deficient Mice

OBJECTIVE Mice with complete deletion of insulin receptor substrate 2 (IRS2) develop hyperglycemia, impaired hepatic insulin signaling, and elevated gluconeogenesis, whereas mice deficient for protein tyrosine phosphatase (PTP)1B display an opposing hepatic phenotype characterized by increased sensitivity to insulin. To define the relationship between these two signaling pathways in the regulat...

متن کامل

Sestrin 3 Protein Enhances Hepatic Insulin Sensitivity by Direct Activation of the mTORC2-Akt Signaling

Sestrin proteins have been implicated in multiple biological processes including resistance to oxidative and genotoxic stresses, protection against aging-related pathologies, and promotion of metabolic homeostasis; however, the underlying mechanisms are incompletely understood. Some evidence suggests that sestrins may inhibit mTORC1 (mechanistic target of rapamycin complex 1) through inhibition...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 294 4  شماره 

صفحات  -

تاریخ انتشار 2008