Use of RNA interference in Drosophila S2 cells to identify host pathways controlling compartmentalization of an intracellular pathogen.

نویسندگان

  • Luisa W Cheng
  • Julie P M Viala
  • Nico Stuurman
  • Ursula Wiedemann
  • Ronald D Vale
  • Daniel A Portnoy
چکیده

Three genome-wide RNA interference screens were performed in Drosophila S2 cells to dissect the contribution of host processes to Listeria monocytogenes entry, vacuolar escape, and intracellular growth. Among the 116 genes identified, several host pathways previously unrecognized as playing a role in listerial pathogenesis were identified: knockdowns affecting vacuolar trafficking to and from the multivesicular body bypassed the requirement for the essential pore-forming toxin listeriolysin O in mediating escape from phagocytic vacuoles and knockdowns affecting either subunit of serine palmitoyltransferase, a key enzyme in ceramide and sphingolipid biosynthesis, enhanced the toxicity of listeriolysin O expressed in the host cell cytosol, leading to lack of appropriate toxin activity compartmentalization and host cell death. Genome-wide RNA interference screens using Drosophila S2 cells proved to be a powerful approach to dissect host-pathogen interactions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional Analysis of Host Factors that Mediate the Intracellular Lifestyle of Cryptococcus neoformans

Cryptococcus neoformans (Cn), the major causative agent of human fungal meningoencephalitis, replicates within phagolysosomes of infected host cells. Despite more than a half-century of investigation into host-Cn interactions, host factors that mediate infection by this fungal pathogen remain obscure. Here, we describe the development of a system that employs Drosophila S2 cells and RNA interfe...

متن کامل

Genome-wide RNAi screen for host factors required for intracellular bacterial infection.

Most studies of host-pathogen interactions have focused on pathogen-specific virulence determinants. Here, we report a genome-wide RNA interference screen to identify host factors required for intracellular bacterial pathogenesis. Using Drosophila cells and the cytosolic pathogen Listeria monocytogenes, we identified 305 double-stranded RNAs targeting a wide range of cellular functions that alt...

متن کامل

The cellular chaperone heat shock protein 90 facilitates Flock House virus RNA replication in Drosophila cells.

The assembly of viral RNA replication complexes on intracellular membranes represents a critical step in the life cycle of positive-strand RNA viruses. We investigated the role of the cellular chaperone heat shock protein 90 (Hsp90) in viral RNA replication complex assembly and function using Flock House virus (FHV), an alphanodavirus whose RNA-dependent RNA polymerase, protein A, is essential ...

متن کامل

RNAi Screen of Endoplasmic Reticulum–Associated Host Factors Reveals a Role for IRE1α in Supporting Brucella Replication

Brucella species are facultative intracellular bacterial pathogens that cause brucellosis, a global zoonosis of profound importance. Although recent studies have demonstrated that Brucella spp. replicate within an intracellular compartment that contains endoplasmic reticulum (ER) resident proteins, the molecular mechanisms by which the pathogen secures this replicative niche remain obscure. Her...

متن کامل

Arginase Activity and Its Effects on Pathogenesis of Leishmania

  Leishmaniasis is a tropical parasitic disease that has become a major health challenge in many countries of the world. Not only has not been found any effective vaccine or treatment for the disease eradication, but also the advent of drug resistance is also increasing. Therefore, it is vital to take a precise attention to the physiochemical cycles of the Leishmania parasite and to identify i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 102 38  شماره 

صفحات  -

تاریخ انتشار 2005