Topology Proceedings 43 (2014) pp. 69-82: C and C* among intermediate rings

نویسنده

  • Joshua Sack
چکیده

Given a completely regular Hausdorff space X, an intermediate ring A(X) is a ring of real valued continuous functions between C∗(X) and C(X). We discuss two correspondences between ideals in A(X) and z-filters on X, both reviewing old results and introducing new results. One correspondence, ZA, extends the well-known correspondence between ideals in C∗(X) and zfilters on X. The other, ZA, extends the natural correspondence between ideals in C(X) and z-filters on X. This paper highlights how these correspondences help clarify what properties of C∗(X) and C(X) are shared by all intermediate rings and what properties of C∗(X) and C(X) characterize those rings among intermediate rings. Using these correspondences, we introduce new classes of ideals and filters for each intermediate ring that extend the notion of z-ideals and z-filters for C(X), and with ZA, a new class of filters for each intermediate ring A(X) that extends the notion of e-filter for C∗(X).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topology Proceedings 45 (2015) pp. 301-313: Characterizing C(X) among intermediate C-rings on X

Let X be a completely regular topological space. An intermediate ring is a ring A(X) of continuous functions satisfying C∗(X) ⊆ A(X) ⊆ C(X). We give a characterization of C(X) in terms of extensions of functions in A(X) to real-compactifications of X. We also give equivalences of properties involving the closure in the real-compactifications of X of zero-sets in X; we use these equivalences to ...

متن کامل

Linear Topological Division Algebras

1. R. F. Arens, A topology for spaces of transformations, Ann. of Math. vol. 47 (1946) pp. 480-495. 2. R. F. Arens ond J. L. Kelley, Characterizations of the space of continuous functions over a compact Hausdorff space, To be published in Trans. Amer. Math. Soc. 3. S. Banach, Théorie des opérations linéaires, Warsaw, 1932. 4. G. Birkhoff, Lattice theory, Amer. Math. Soc. Colloquium Publications...

متن کامل

Mappings to Realcompactifications

In this paper, we introduce and study  a mapping from the collection of all  intermediate rings of $C(X)$ to the collection of all  realcompactifications of $X$ contained in $beta X$. By establishing the relations between this mapping and its converse,  we give a different approach to the main statements of De et. al. Using these, we provide different answers to the   four basic questions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013