1 M ay 2 00 0 FERMIONIC FORM AND BETTI NUMBERS

نویسنده

  • G. LUSZTIG
چکیده

We state a conjectural relationship between the fermionic form [HKOTY] and the Betti numbers of a Grassmannian over a preprojective algebra or, equivalently , of a lagrangian quiver variety.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

M ay 2 00 0 FERMIONIC FORM AND BETTI NUMBERS

We state a conjectural relationship between the fermionic form [HKOTY] and the Betti numbers of a Grassmannian over a preprojective algebra or, equivalently , of a lagrangian quiver variety.

متن کامل

Von Neumann Betti Numbers and Novikov Type Inequalities

In this paper we show that Novikov type inequalities for closed 1-forms hold with the von Neumann Betti numbers replacing the Novikov numbers. As a consequence we obtain a vanishing theorem for L cohomology. We also prove that von Neumann Betti numbers coincide with the Novikov numbers for free abelian coverings. §0. Introduction S. Novikov and M. Shubin [NS] proved that Morse inequalities for ...

متن کامل

Quaternionic Bundles and Betti Numbers of Symplectic 4-manifolds with Kodaira Dimension Zero

The Kodaira dimension of a non-minimal manifold is defined to be that of any of its minimal models. It is shown in [12] that, if ω is a Kähler form on a complex surface (M,J), then κ(M,ω) agrees with the usual holomorphic Kodaira dimension of (M,J). It is also shown in [12] that minimal symplectic 4−manifolds with κ = 0 are exactly those with torsion canonical class, thus can be viewed as sympl...

متن کامل

2 Sean Jacques And

This paper produces a recursive formula of the Betti numbers of certain Stanley-Reisner ideals (graph ideals associated to forests). This gives a purely combinatorial definition of the projective dimension of these ideals, which turns out to be a new numerical invariant of forests. Finally, we propose a possible extension of this invariant to general graphs. 0. Introduction Throughout this pape...

متن کامل

Betti Numbers of Semialgebraic Sets Defined by Quantifier-Free Formulae

Let X be a semialgebraic set inRn defined by a Boolean combination of atomic formulae of the kind h ∗ 0 where ∗ ∈ {>,≥,=}, deg(h) < d, and the number of distinct polynomials h is k. We prove that the sum of Betti numbers of X is less than O(k2d)n . Let an algebraic set X ⊂ Rn be defined by polynomial equations of degrees less than d. The well-known results of Oleinik, Petrovskii [8], [9], Milno...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000