Multifrequency electron spin resonance spectra of a spin-labeled protein calculated from molecular dynamics simulations.
نویسندگان
چکیده
Multifrequency electron spin resonance (ESR) spectra provide a wealth of structural and dynamic information about the local environment of the spin label and, indirectly, about the spin-labeled protein. Relating the features of the observed spectra to the underlying molecular motions and interactions is, however, challenging. To make progress toward a rigorous interpretation of ESR spectra, we perform extensive molecular dynamics (MD) simulations of fully solvated T4 Lysozyme, labeled with the spin label MTSSL at positions 72 and 131. These two sites have been the object of numerous experimental studies and are generally considered as prototypical solvent-exposed sites on the surfaces of alpha-helices. To extend the time window afforded by the MD simulations, stochastic Markov models reflecting the dynamics of the spin label side chains in terms of their rotameric states are constructed from the trajectories. The calculated multifrequency ESR spectra are in very good agreement with experiment for three different magnetic field strengths without adjusting any parameters. During the trajectories, the spin labels interconvert among a fairly large number of conformations and display a propensity to form interactions with protein residues other than their nearest neighbors along the helix. The detailed picture of the spin label emerging from the MD simulations provides useful insight into the molecular origins of the available spectroscopic and crystallographic data.
منابع مشابه
MD and multifrequency EPR studies of the dynamics of the MTSL spin-label in the activation loop of Aurora-A kinase protein
Classical molecular dynamics (MD) simulations, within the AMBER program package that runs entirely on a CUDA-enabled NVIDIA graphic processing unit (GPU), were employed to study the dynamics of the methane-thiosulfonate spin labelled (MTSL) Aurora-A kinase activation loop in a very short time and with good quality of the sampling. The MD simulation provided a wealth of information on the intera...
متن کاملUsing Markov models to simulate electron spin resonance spectra from molecular dynamics trajectories.
Simulating electron spin resonance (ESR) spectra directly from molecular dynamics simulations of a spin-labeled protein necessitates a large number (hundreds or thousands) of relatively long (hundreds of nanoseconds) trajectories. To meet this challenge, we explore the possibility of constructing accurate stochastic models of the spin label dynamics from atomistic trajectories. A systematic, tw...
متن کاملA Multifrequency Electron Spin Resonance Study of T4 Lysozyme Dynamics Using the Slowly Relaxing Local Structure Model
Electron spin resonance (ESR) spectra were obtained at 250 and 9 GHz for nitroxide-labeled mutants of the protein T4 lysozyme in aqueous solution over a range of temperatures from 2 to 37.5 °C. Two mutants labeled at sites 72 and 131 were studied and compared. The mutant sites are solvent exposed and free of tertiary interactions with other side chains, but the former is at the center of a 5 tu...
متن کاملA structure-based simulation approach for electron paramagnetic resonance spectra using molecular and stochastic dynamics simulations.
Electron paramagnetic resonance (EPR) spectroscopy using site-directed spin-labeling is an appropriate technique to analyze the structure and dynamics of flexible protein regions as well as protein-protein interactions under native conditions. The analysis of a set of protein mutants with consecutive spin-label positions leads to the identification of secondary and tertiary structure elements. ...
متن کاملSimulation of electron paramagnetic resonance spectra of spin-labeled molecules from replica-exchange molecular dynamics.
We report a general approach for the simulation of the electron paramagnetic resonance (EPR) spectra of spin labels attached to peptides and proteins directly from replica-exchange molecular dynamics (REMD) trajectories. Conventional MD trajectories are generally inadequate for the prediction of EPR line shapes since the label can become trapped in one or more of a set of rotameric states, thus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Chemical Society
دوره 131 7 شماره
صفحات -
تاریخ انتشار 2009