Mathematical Model of Ammonia Handling in the Rat Renal Medulla

نویسندگان

  • Lorette Noiret
  • Stephen Baigent
  • Rajiv Jalan
  • S. Randall Thomas
  • Jeff M. Sands
چکیده

The kidney is one of the main organs that produces ammonia and release it into the circulation. Under normal conditions, between 30 and 50% of the ammonia produced in the kidney is excreted in the urine, the rest being absorbed into the systemic circulation via the renal vein. In acidosis and in some pathological conditions, the proportion of urinary excretion can increase to 70% of the ammonia produced in the kidney. Mechanisms regulating the balance between urinary excretion and renal vein release are not fully understood. We developed a mathematical model that reflects current thinking about renal ammonia handling in order to investigate the role of each tubular segment and identify some of the components which might control this balance. The model treats the movements of water, sodium chloride, urea, NH3 and [Formula: see text], and non-reabsorbable solute in an idealized renal medulla of the rat at steady state. A parameter study was performed to identify the transport parameters and microenvironmental conditions that most affect the rate of urinary ammonia excretion. Our results suggest that urinary ammonia excretion is mainly determined by those parameters that affect ammonia recycling in the loops of Henle. In particular, our results suggest a critical role for interstitial pH in the outer medulla and for luminal pH along the inner medullary collecting ducts.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A mathematical model of the urine concentrating mechanism in the rat renal medulla. I. Formulation and base-case results.

A new, region-based mathematical model of the urine concentrating mechanism of the rat renal medulla was used to investigate the significance of transport and structural properties revealed in anatomic studies. The model simulates preferential interactions among tubules and vessels by representing concentric regions that are centered on a vascular bundle in the outer medulla (OM) and on a colle...

متن کامل

A mathematical model of O2 transport in the rat outer medulla. I. Model formulation and baseline results.

The mammalian kidney is particularly vulnerable to hypoperfusion, because the O(2) supply to the renal medulla barely exceeds its O(2) requirements. In this study, we examined the impact of the complex structural organization of the rat outer medulla (OM) on O(2) distribution. We extended the region-based mathematical model of the rat OM developed by Layton and Layton (Am J Physiol Renal Physio...

متن کامل

Ammonia production and amino acid metabolism by rat renal papillary epithelial cells in culture.

A significant percentage of excreted ammonium is added to tubular fluid along the medullary collecting duct. However, it is not clear whether this ammonia is produced in the cortex and delivered into the medulla or is produced directly by medullary cells. To address this issue, rat epithelial cells derived from the renal papilla were grown in continuous culture and their ability to generate amm...

متن کامل

A mathematical model of the urine concentrating mechanism in the rat renal medulla. II. Functional implications of three-dimensional architecture.

In a companion study [Layton AT. A mathematical model of the urine concentrating mechanism in the rat renal medulla. I. Formulation and base-case results. Am J Physiol Renal Physiol. (First published November 10, 2010). 10.1152/ajprenal.00203.2010] a region-based mathematical model was formulated for the urine concentrating mechanism in the renal medulla of the rat kidney. In the present study,...

متن کامل

Impaired expression of key molecules of ammoniagenesis underlies renal acidosis in a rat model of chronic kidney disease.

BACKGROUND Advanced chronic kidney disease (CKD) is associated with the development of renal metabolic acidosis. Metabolic acidosis per se may represent a trigger for progression of CKD. Renal acidosis of CKD is characterized by low urinary ammonium excretion with preserved urinary acidification indicating a defect in renal ammoniagenesis, ammonia excretion or both. The underlying molecular mec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015