Computing Mel-frequency cepstral coefficients on the power spectrum

نویسندگان

  • Sirko Molau
  • Michael Pitz
  • Ralf Schlüter
  • Hermann Ney
چکیده

In this paper we present a method to derive Mel-frequency cepstral coefficients directly from the power spectrum of a speech signal. We show that omitting the filterbank in signal analysis does not affect the word error rate. The presented approach simplifies the speech recognizer’s front end by merging subsequent signal analysis steps into a single one. It avoids possible interpolation and discretization problems and results in a compact implementation. We show that frequency warping schemes like vocal tract normalization (VTN) can be integrated easily in our concept without additional computational efforts. Recognition test results obtained with the RWTH large vocabulary speech recognition system are presented for two different corpora: The German VerbMobil II dev99 corpus, and the English North American Business News 94 20k development corpus.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speaker Recognition System Based On MFCC and DCT

This paper examines and presents an approach to the recognition of speech signal using frequency spectral information with Mel frequency. It is a dominant feature for speech recognition. Mel-frequency cepstral coefficients (MFCCs) are the coefficients that collectively represent the shortterm power spectrum of a sound, based on a linear cosine transform of a log power spectrum on a non linear m...

متن کامل

Feature extraction from higher-lag autocorrelation coefficients for robust speech recognition

In this paper, a feature extraction method that is robust to additive background noise is proposed for automatic speech recognition. Since the background noise corrupts the autocorrelation coefficients of the speech signal mostly at the lowertime lags, while the higher-lag autocorrelation coefficients are least affected, this method discards the lower-lag autocorrelation coefficients and uses o...

متن کامل

Amplitude modulation features for emotion recognition from speech

The goal of speech emotion recognition (SER) is to identify the emotional or physical state of a human being from his or her voice. One of the most important things in a SER task is to extract and select relevant speech features with which most emotions could be recognized. In this paper, we present a smoothed nonlinear energy operator (SNEO)-based amplitude modulation cepstral coefficients (AM...

متن کامل

Regularized minimum variance distortionless response-based cepstral features for robust continuous speech recognition

In this paper, we present robust feature extractors that incorporate a regularized minimum variance distortionless response (RMVDR) spectrum estimator instead of the discrete Fourier transform-based direct spectrum estimator, used in many front-ends including the conventional MFCC, to estimate the speech power spectrum. Direct spectrum estimators, e.g., single tapered periodogram, have high var...

متن کامل

Cepstrum derived from differentiated power spectrum for robust speech recognition

In this paper, cepstral features derived from the differential power spectrum (DPS) are proposed for improving the robustness of a speech recognizer in presence of background noise. These robust features are computed from the speech signal of a given frame through the following four steps. First, the short-time power spectrum of speech signal is computed from the speech signal through the fast ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001