Semidefinite optimization in discrepancy theory

نویسنده

  • Nikhil Bansal
چکیده

Recently, there have been several newdevelopments in discrepancy theory based on connections to semidefinite programming. This connection has been useful in several ways. It gives efficient polynomial time algorithms for several problems for which only non-constructive results were previously known. It also leads to several new structural results in discrepancy itself, such as tightness of the so-called determinant lower bound, improved bounds on the discrepancy of the union of set systems and so on. We will give a brief survey of these results, focussing on the main ideas and the techniques involved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploiting semidefinite relaxations in constraint programming

Constraint programming uses enumeration and search tree pruning to solve combinatorial optimization problems. In order to speed up this solution process, we investigate the use of semidefinite relaxations within constraint programming. In principle, we use the solution of a semidefinite relaxation to guide the traversal of the search tree, using a limited discrepancy search strategy. Furthermor...

متن کامل

A Semidefinite Optimization Approach to Quadratic Fractional Optimization with a Strictly Convex Quadratic Constraint

In this paper we consider a fractional optimization problem that minimizes the ratio of two quadratic functions subject to a strictly convex quadratic constraint. First using the extension of Charnes-Cooper transformation, an equivalent homogenized quadratic reformulation of the problem is given. Then we show that under certain assumptions, it can be solved to global optimality using semidefini...

متن کامل

The Komlos Conjecture Holds for Vector Colorings

The Komlós conjecture in discrepancy theory states that for some constant K and for any m× n matrix A whose columns lie in the unit ball there exists a vector x ∈ {−1,+1} such that ‖Ax‖∞ ≤ K. This conjecture also implies the Beck-Fiala conjecture on the discrepancy of bounded degree hypergraphs. Here we prove a natural relaxation of the Komlós conjecture: if the columns of A are assigned unit v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Program.

دوره 134  شماره 

صفحات  -

تاریخ انتشار 2012