Missing covariates in longitudinal data with informative dropouts: bias analysis and inference.

نویسندگان

  • Jason Roy
  • Xihong Lin
چکیده

We consider estimation in generalized linear mixed models (GLMM) for longitudinal data with informative dropouts. At the time a unit drops out, time-varying covariates are often unobserved in addition to the missing outcome. However, existing informative dropout models typically require covariates to be completely observed. This assumption is not realistic in the presence of time-varying covariates. In this article, we first study the asymptotic bias that would result from applying existing methods, where missing time-varying covariates are handled using naive approaches, which include: (1) using only baseline values; (2) carrying forward the last observation; and (3) assuming the missing data are ignorable. Our asymptotic bias analysis shows that these naive approaches yield inconsistent estimators of model parameters. We next propose a selection/transition model that allows covariates to be missing in addition to the outcome variable at the time of dropout. The EM algorithm is used for inference in the proposed model. Data from a longitudinal study of human immunodeficiency virus (HIV)-infected women are used to illustrate the methodology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Joint inference for nonlinear mixed-effects models and time to event at the presence of missing data.

In many longitudinal studies, the individual characteristics associated with the repeated measures may be possible covariates of the time to an event of interest, and thus, it is desirable to model the time-to-event process and the longitudinal process jointly. Statistical analyses may be further complicated in such studies with missing data such as informative dropouts. This article considers ...

متن کامل

Efficient quantile marginal regression for longitudinal data with dropouts.

In many biomedical studies independent variables may affect the conditional distribution of the response differently in the middle as opposed to the upper or lower tail. Quantile regression evaluates diverse covariate effects on the conditional distribution of the response with quantile-specific regression coefficients. In this paper, we develop an empirical likelihood inference procedure for l...

متن کامل

Bayesian informative dropout model for longitudinal binary data with random effects using conditional and joint modeling approaches.

Dropouts are common in longitudinal study. If the dropout probability depends on the missing observations at or after dropout, this type of dropout is called informative (or nonignorable) dropout (ID). Failure to accommodate such dropout mechanism into the model will bias the parameter estimates. We propose a conditional autoregressive model for longitudinal binary data with an ID model such th...

متن کامل

Marginal Analysis of A Population-Based Genetic Association Study of Quantitative Traits with Incomplete Longitudinal Data

A common study to investigate gene-environment interaction is designed to be longitudinal and population-based. Data arising from longitudinal association studies often contain missing responses. Naive analysis without taking missingness into account may produce invalid inference, especially when the missing data mechanism depends on the response process. To address this issue in the ana...

متن کامل

A Semiparametric Marginalized Model for Longitudinal Data with Informative Dropout.

We propose a marginalized joint-modeling approach for marginal inference on the association between longitudinal responses and covariates when longitudinal measurements are subject to informative dropouts. The proposed model is motivated by the idea of linking longitudinal responses and dropout times by latent variables while focusing on marginal inferences. We develop a simple inference proced...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biometrics

دوره 61 3  شماره 

صفحات  -

تاریخ انتشار 2005