Interaction between developing spinal locomotor networks in the neonatal mouse.

نویسندگان

  • Ian T Gordon
  • Mary J Dunbar
  • Kimberly J Vanneste
  • Patrick J Whelan
چکیده

At birth, thoracosacral spinal cord networks in mouse can produce a coordinated locomotor-like pattern. In contrast, less is known about the cervicothoracic networks that generate forelimb locomotion. Here we show that cervical networks can produce coordinated rhythmic patterns in the brain stem-spinal cord preparation of the mouse. Segmentally the C5 and C8 neurograms were each found to be alternating left-right, and the ipsilateral C5 and C8 neurograms also alternated. Collectively these patterns were suggestive of locomotor-like activity. This pattern was not dependent on the presence of thoracosacral segments because they could be evoked following a complete transection of the spinal cord at T5. We next demonstrated that activation of thoracosacral networks either pharmacologically or by stimulation of sacrocaudal afferents could produce rhythmic activity within the C5 and C8 neurograms. On the other hand, pharmacological activation of cervical networks did not evoke alternating cervical rhythmic activity either in isolated cervicothoracic or -sacral preparations. Under these conditions, we found that activation of cervicothoracic networks could alter the timing of thoracosacral locomotor-like patterns. When thoracosacral networks were not activated pharmacologically but received rhythmic drive from cervicothoracic networks, a pattern of slow bursts with superimposed fast synchronous oscillations became the dominant lumbar neurogram pattern. Our data suggest that in neonatal mice the cervical CPG is capable of producing coordinated rhythmic patterns in the absence of input from lumbar segments, but caudorostral drive contributes to cervical patterns and rhythm stability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monoaminergic establishment of rostrocaudal gradients of rhythmicity in the neonatal mouse spinal cord.

Bath application of monoamines is a potent method for evoking locomotor activity in neonatal rats and mice. Monoamines also promote functional recovery in adult animals with spinal cord injuries by activating spinal cord networks. However, the mechanisms of their actions on spinal networks are largely unknown. In this study, we tested the hypothesis that monoamines establish rostrocaudal gradie...

متن کامل

Neonatal Circuits

Rhythmic patterns of coordinated movement are produced by networks of spinal neurons known as ‘central pattern generators’ (CPGs). These circuits have been studied using isolated spinal cord preparations that can generate a pattern of motor discharge that resembles locomotion (locomotor-like activity). The isolated spinal cord is more experimentally accessible than the equivalent in vivo prepar...

متن کامل

Running Head: Cervical CPG activity in neonatal mice Address for Correspondence

At birth, thoracosacral spinal cord networks in mouse can produce a coordinated locomotor-like pattern. In contrast, less is known about the cervicothoracic networks that generate forelimb locomotion. Here we show that cervical networks can produce coordinated rhythmic patterns in the brainstem-spinal cord preparation of the mouse. Segmentally the C5 and C8 neurograms were each found to be alte...

متن کامل

Dopamine exerts activation-dependent modulation of spinal locomotor circuits in the neonatal mouse.

Monoamines can modulate the output of a variety of invertebrate and vertebrate networks, including the spinal cord networks that control walking. Here we examined the multiple changes in the output of locomotor networks induced by dopamine (DA). We found that DA can depress the activation of locomotor networks in the neonatal mouse spinal cord following ventral root stimulation. By examining di...

متن کامل

Remote Control of Respiratory Neural Network by Spinal Locomotor Generators

During exercise and locomotion, breathing rate rapidly increases to meet the suddenly enhanced oxygen demand. The extent to which direct central interactions between the spinal networks controlling locomotion and the brainstem networks controlling breathing are involved in this rhythm modulation remains unknown. Here, we show that in isolated neonatal rat brainstem-spinal cord preparations, the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 100 1  شماره 

صفحات  -

تاریخ انتشار 2008