Mining Attribute-structure Correlated Patterns in Large Attributed Graphs

نویسندگان

  • Arlei Silva
  • Wagner Meira
  • Mohammed J. Zaki
چکیده

In this work, we study the correlation between attribute sets and the occurrence of dense subgraphs in large attributed graphs, a task we call structural correlation pattern mining. A structural correlation pattern is a dense subgraph induced by a particular attribute set. Existing methods are not able to extract relevant knowledge regarding how vertex attributes interact with dense subgraphs. Structural correlation pattern mining combines aspects of frequent itemset and quasi-clique mining problems. We propose statistical significance measures that compare the structural correlation of attribute sets against their expected values using null models. Moreover, we evaluate the interestingness of structural correlation patterns in terms of size and density. An efficient algorithm that combines search and pruning strategies in the identification of the most relevant structural correlation patterns is presented. We apply our method for the analysis of three real-world attributed graphs: a collaboration, a music, and a citation network, verifying that it provides valuable knowledge in a feasible time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graph Hybrid Summarization

One solution to process and analysis of massive graphs is summarization. Generating a high quality summary is the main challenge of graph summarization. In the aims of generating a summary with a better quality for a given attributed graph, both structural and attribute similarities must be considered. There are two measures named density and entropy to evaluate the quality of structural and at...

متن کامل

Context Selection on Attributed Graphs for Outlier and Community Detection

English Version) Today’s applications store large amounts of complex data that combine information of different types. In particular, attributed graphs are an example for such a complex database. They are widely used for the representation of social networks, gene and protein interactions, communication networks or product co-purchase in web stores. Each object is characterized by its relations...

متن کامل

Trend Mining in Dynamic Attributed Graphs

Many applications see huge demands of discovering important patterns in dynamic attributed graph. In this paper, we introduce the problem of discovering trend sub-graphs in dynamic attributed graphs. This new kind of pattern relies on the graph structure and the temporal evolution of the attribute values. Several interestingness measures are introduced to focus on the most relevant patterns wit...

متن کامل

Efficient Algorithms for a Robust Modularity-Driven Clustering of Attributed Graphs

Clustering methods based on modularity are wellestablished and widely used for graph data. However, today’s applications store additional attribute information for each node in the graph. This attribute information may even be contradicting with the graph structure, which raises a major challenge for the simultaneous mining of both information sources. For attributed graphs it is essential to b...

متن کامل

PICS: Parameter-free Identification of Cohesive Subgroups in Large Attributed Graphs

Given a graph with node attributes, how can we find meaningful patterns such as clusters, bridges, and outliers? Attributed graphs appear in real world in the form of social networks with user interests, gene interaction networks with gene expression information, phone call networks with customer demographics, and many others. In effect, we want to group the nodes into clusters with similar con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • PVLDB

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2012