Secondary binding sites for heavily modified triplex forming oligonucleotides
نویسندگان
چکیده
In order to enhance DNA triple helix stability synthetic oligonucleotides have been developed that bear amino groups on the sugar or base. One of the most effective of these is bis-amino-U (B), which possesses 5-propargylamino and 2'-aminoethoxy modifications. Inclusion of this modified nucleotide not only greatly enhances triplex stability, but also increases the affinity for related sequences. We have used a restriction enzyme protection, selection and amplification assay (REPSA) to isolate sequences that are bound by the heavily modified 9-mer triplex-forming oligonucleotide B(6)CBT. The isolated sequences contain A(n) tracts (n = 6), suggesting that the 5'-end of this TFO was responsible for successful triplex formation. DNase I footprinting with these sequences confirmed triple helix formation at these secondary targets and demonstrated no interaction with similar oligonucleotides containing T or 5-propargylamino-dU.
منابع مشابه
Azole substituted oligonucleotides promote antiparallel triplex formation at non-homopurine duplex targets.
The ability of certain azole substituted oligodeoxy-ribonucleotides to promote antiparallel triple helix formation with duplex targets having CG or TA interruptions in the otherwise homopurine sequence was examined. 2'-Deoxyribonucleosides of the azoles, which include pyrazole, imidazole, 1,2,4-triazole and 1,2,3,4-tetrazole were synthesized using the stereo-specific sodium salt glycosylation p...
متن کاملPositively charged oligonucleotides overcome potassium-mediated inhibition of triplex DNA formation.
The formation of triplex DNA using unmodified, purine-rich oligonucleotides (ODNs) is inhibited by physiologic levels of potassium. Changing negative phosphodiester bonds in a triplex forming oligonucleotide (TFO) to neutral linkages causes a small increase in triplex formation. When phosphodiester bonds in a TFO are converted to positively-charged linkages the formation of triplex DNA increase...
متن کاملTargeting chromosomal sites with locked nucleic acid-modified triplex-forming oligonucleotides: study of efficiency dependence on DNA nuclear environment
Triplex-forming oligonucleotides (TFOs) are synthetic DNA code-reading molecules that have been demonstrated to function to some extent in chromatin within cell nuclei. Here we have investigated the impact of DNA nuclear environment on the efficiency of TFO binding. For this study we have used locked nucleic acid-containing TFOs (TFO/LNAs) and we report the development of a rapid PCR-based meth...
متن کاملUnderstanding oligonucleotide-mediated inhibition of gene expression in Xenopus laevis oocytes.
Triplex-forming oligonucleotides (TFOs) modified with N,N-diethylethylenediamine can inhibit the expression of a reporter plasmid in Xenopus oocytes if the triplex is preformed prior to injection while unmodified oligonucleotides cannot. Here we show that merely forming a triplex in a reporter plasmid does not disrupt transcription, but when TFOs are targeted to sites within the transcribed reg...
متن کاملRecognition of RNA duplexes by chemically modified triplex-forming oligonucleotides
Triplex is emerging as an important RNA tertiary structure motif, in which consecutive non-canonical base pairs form between a duplex and a third strand. RNA duplex region is also often functionally important site for protein binding. Thus, triplex-forming oligonucleotides (TFOs) may be developed to regulate various biological functions involving RNA, such as viral ribosomal frameshifting and r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 40 شماره
صفحات -
تاریخ انتشار 2012