Metastable Knots in Confined Semiflexible Chains

نویسندگان

  • Liang Dai
  • C. Benjamin Renner
  • Patrick S. Doyle
چکیده

We study the size distribution of spontaneous knots on semiflexible chains confined in square cross-section channels using Monte Carlo simulations. The most probable knot size, i.e. the metastable knot size, is found to vary nonmonotonically with the channel size. In the case of weak confinement, the metastable knot size is larger than the knot size in bulk because the segments within the knot feel less channel confinement than the segments outside the knot, and the channel pushes the segments into knot cores to reduce the overall free energy. Conversely, in the case of strong confinement, the metastable knot size is smaller than the one in bulk because the segments within the knot experience more channel confinement, and the channel expels segments from the knot core. We demonstrate that a simple theory can capture this nonmonotonic behavior and quantitatively explain the metastable knot size as a function of the channel size. These results may have implications for tuning the channel size to either generate or screen knots.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metastable Tight Knots in Semiflexible Chains

Knotted structures can spontaneously occur in polymers such as DNA and proteins, and the formation of knots affects biological functions, mechanical strength and rheological properties. In this work, we calculate the equilibrium size distribution of trefoil knots in linear DNA using off-lattice simulations. We observe metastable knots on DNA, as predicted by Grosberg and Rabin. Furthermore, we ...

متن کامل

Origin of metastable knots in single flexible chains.

Recent theoretical progress has explained the physics of knotting of semiflexible polymers, yet knotting of flexible polymers is relatively unexplored. We herein develop a new theory for the size distribution of knots on a flexible polymer and the existence of metastable knots. We show the free energy of a flexible molecule in a tube can be mapped to quantitatively reproduce the free energy dis...

متن کامل

Brownian dynamics simulations of charged semiflexible polymers confined to curved surfaces.

As an extension of the generalized bead-rod model developed earlier by the authors, this paper proposes a method for Brownian dynamics simulations of charged semiflexible polymers confined to various curved surfaces such as spherical, cylindrical, ellipsoidal and toroidal. We model charged semiflexible polymers as discrete wormlike chains consisting of virtual beads connected by inextensible ro...

متن کامل

On the confinement of semiflexible chains under torsion.

The effect of a finite torque on semiflexible polymers in a confined environment is investigated. It is shown how a new length scale appears in the strongly confined limit. The influence of a torque on the extension of biopolymers in nanochannels is also touched upon and it is argued that the presence of a torque has a strong influence on the dimensions of nanochannels needed to prevent hairpins.

متن کامل

Conformational transition of polyelectrolyte chains extending over the de Gennes regime in slitlike nanochannels

The confinement-induced conformational transitions of the polyelectrolyte chain are characterized with the coarse-grained Brownian dynamics simulations and the blob theory. Submicron-sized biopolymer xanthan is chosen as a model polyelectrolyte taking into account both flexible and semiflexible chains for comparison. Confined flexible and semiflexible chains exhibit a nonmonotonic variation in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014