Metrics in Cartesian Product 1

نویسندگان

  • Stanisława Kanas
  • Jan Stankiewicz
چکیده

The articles [7], [4], [10], [9], [5], [2], [3], [1], [6], and [8] provide the notation and terminology for this paper. We adopt the following rules: X , Y denote non empty metric spaces, x1, y1, z1 denote elements of X , and x2, y2, z2 denote elements of Y . The scheme LambdaMCART deals with non empty sets A , B, C and a 4-ary functor F yielding an element of C , and states that: There exists a function f from [: [:A , B :], [:A , B :] :] into C such that for all elements x1, y1 of A and for all elements x2, y2 of B and for all elements x, y of [:A , B :] if x = 〈x1, x2〉 and y = 〈y1, y2〉, then f (〈x, y〉) = F (x1,y1,x2,y2) for all values of the parameters. Let us consider X , Y . The functor ρX×Y yielding a function from [: [: the carrier of X , the carrier of Y :], [: the carrier of X , the carrier of Y :] :] into R is defined by the condition (Def. 1).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The reliability Wiener number of cartesian product graphs

Reliability Wiener number is a modification of the original Wiener number in which probabilities are assigned to edges yielding a natural model in which there are some (or all) bonds in the molecule that are not static. Various probabilities naturally allow modelling different types of chemical bonds because chemical bonds are of different types and it is well-known that under certain condition...

متن کامل

On the Fisher Metric of Conditional Probability Polytopes

We consider three different approaches to define natural Riemannian metrics on polytopes of stochastic matrices. First, we define a natural class of stochastic maps between these polytopes and give a metric characterization of Chentsov type in terms of invariance with respect to these maps. Second, we consider the Fisher metric defined on arbitrary polytopes through their embeddings as exponent...

متن کامل

The Merrifield-Simmons indices and Hosoya indices of some classes of cartesian graph product

The Merrifield-Simmons index of a graph is defined as the total number of the independent sets of the graph and the Hosoya index of a graph is defined as the total number of the matchings of the graph. In this paper, we give formula for Merrifield-Simmons and Hosoya indices of some classes of cartesian product of two graphs K{_2}×H, where H is a path graph P{_n}, cyclic graph C{_n}, or star gra...

متن کامل

Existence and uniqueness of the solution for a general system of operator equations in $b-$metric spaces endowed with a graph

The purpose of this paper is to present some coupled fixed point results on a metric space endowed with two $b$-metrics. We shall apply a fixed point theorem for an appropriate operator on the Cartesian product of the given spaces endowed with directed graphs. Data dependence, well-posedness and Ulam-Hyers stability are also studied. The results obtained here will be applied to prove the existe...

متن کامل

Computing the First and Third Zagreb Polynomials of Cartesian Product of Graphs

Let G be a graph. The first Zagreb polynomial M1(G, x) and the third Zagreb polynomial M3(G, x) of the graph G are defined as:     ( ) ( , ) [ ] e uv E G G x x d(u) + d(v) M1 , ( , )  euvE(G) G x x|d(u) - d(v)| M3 . In this paper, we compute the first and third Zagreb polynomials of Cartesian product of two graphs and a type of dendrimers.

متن کامل

Berwald metrics constructed by Chevalley’s polynomials

Berwald metrics are particular Finsler metrics which still have linear Berwald connections. Their complete classification is established in an earlier work, [Sz1], of this author. The main tools in these classification are the Simons-Berger holonomy theorem and the Weyl-group theory. It turnes out that any Berwald metric is a perturbed-Cartesian product of Riemannian, Minkowski, and such non-Ri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004