Stochastic Gradient Methods for Distributionally Robust Optimization with f-divergences
نویسندگان
چکیده
We develop efficient solution methods for a robust empirical risk minimization problem designed to give calibrated confidence intervals on performance and provide optimal tradeoffs between bias and variance. Our methods apply to distributionally robust optimization problems proposed by Ben-Tal et al., which put more weight on observations inducing high loss via a worst-case approach over a non-parametric uncertainty set on the underlying data distribution. Our algorithm solves the resulting minimax problems with nearly the same computational cost of stochastic gradient descent through the use of several carefully designed data structures. For a sample of size n, the per-iteration cost of our method scales as O(log n), which allows us to give optimality certificates that distributionally robust optimization provides at little extra cost compared to empirical risk minimization and stochastic gradient methods.
منابع مشابه
Phi-Divergence Constrained Ambiguous Stochastic Programs for Data-Driven Optimization
This paper investigates the use of φ-divergences in ambiguous (or distributionally robust) two-stage stochastic programs. Classical stochastic programming assumes the distribution of uncertain parameters are known. However, the true distribution is unknown in many applications. Especially in cases where there is little data or not much trust in the data, an ambiguity set of distributions can be...
متن کاملSemi-supervised Learning Based on Distributionally Robust Optimization
We propose a novel method for semi-supervised learning (SSL) based on data-driven distributionally robust optimization (DRO) using optimal transport metrics. Our proposed method enhances generalization error by using the unlabeled data to restrict the support of the worst case distribution in our DRO formulation. We enable the implementation of our DRO formulation by proposing a stochastic grad...
متن کاملDistributionally Robust Project Crashing with Partial or No Correlation Information
Crashing is a method for optimally shortening the project makespan by reducing the time of one or more activities in a project network by allocating resources to it. Activity durations are however uncertain and techniques in stochastic optimization, robust optimization and distributionally robust optimization have been developed to tackle this problem. In this paper, we study a class of distrib...
متن کاملOn distributionally robust joint chance-constrained problems
Introduction: A chance constrained optimization problem involves constraints with stochastic data that are required to be satisfied with a pre-specified probability. When the underlying distribution of the stochastic data is not known precisely, an often used model is to require the chance constraints to hold for all distributions in a given family. Such a problem is known as a distributionally...
متن کاملStatistics of Robust Optimization: A Generalized Empirical Likelihood Approach
We study statistical inference and robust solution methods for stochastic optimization prob-lems. We first develop an empirical likelihood framework for stochastic optimization. We showan empirical likelihood theory for Hadamard differentiable functionals with general f -divergencesand give conditions under which T (P ) = infx∈X EP [`(x; ξ)] is Hadamard differentiable. Noting<lb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016