Exotic paired phases in ladders with spin-dependent hopping
نویسندگان
چکیده
Fermions in two-dimensions (2D) when subject to anisotropic spin-dependent hopping can potentially give rise to unusual paired states in unpolarized mixtures that can behave as non-Fermi liquids. One possibility is a fully paired state with a gap for fermion excitations in which the Cooper pairs remain uncondensed. Such a “Cooper-pair Bose-metal” phase would be expected to have a singular Bose-surface in momentum space. As demonstrated in the context of 2D bosons hopping with a frustrating ring-exchange interaction, an analogous Bose-metal phase has a set of quasi-1D descendent states when put on a ladder geometry. Here we present a density matrix renormalization group (DMRG) study of the attractive Hubbard model with spin-dependent hopping on a two-leg ladder geometry. In our setup, one spin species moves preferentially along the leg direction, while the other does so along the rung direction. We find compelling evidence for the existence of a novel Cooper-pair Bose-metal phase in a region of the phase diagram at intermediate coupling. We further explore the phase diagram of this model as a function of hopping anisotropy, density, and interaction strength, finding a conventional superfluid phase, as well as a phase of paired Cooper pairs with d-wave symmetry, similar to the one found in models of hard-core bosons with ring-exchange. We argue that simulating this model with cold Fermi gases on spin dependent optical lattices is a promising direction for realizing exotic quantum states.
منابع مشابه
Exotic paired states with anisotropic spin-dependent Fermi surfaces.
We propose a model for realizing exotic paired states in cold Fermi gases by using a spin-dependent optical lattice to engineer mismatched Fermi surfaces for each hyperfine species. The BCS phase diagram shows a stable paired superfluid state with coexisting pockets of momentum space with gapless unpaired carriers, similar to the Sarma state in polarized mixtures, but in our case the system is ...
متن کامل2 5 Ja n 20 05 One - Dimensional Magnetism
We present an up-to-date survey of theoretical concepts and results in the field of one-dimensional magnetism and of their relevance to experiments and real materials. Main emphasis of the chapter is on quantum phenomena in models of localized spins with isotropic exchange and additional interactions from anisotropy and external magnetic fields. Three sections deal with the main classes of mode...
متن کاملBipolaron density-wave driven by antiferromagnetic correlations and frustration in organic superconductors
We describe the paired electron crystal (PEC) which occurs in the interacting frustrated twodimensional 4filled band. The PEC is a charge-ordered state with nearest-neighbor spin singlets separated by pairs of vacant sites, and can be thought of as a bipolaron density wave. The PEC has been experimentally observed in the insulating state proximate to superconductivity in the organic chargetrans...
متن کاملOne-Particle vs. Two-Particle Crossover in Weakly Coupled Hubbard Chains and Ladders: Perturbative Renormalization Group Approach
Physical nature of dimensional crossovers in coupled one-dimensional systems has currently provoked a great deal of controversy. Recent discovery of the superconductivity in the doped spin ladder under pressure has stimulated us to study the dimensional crossover problem in the weakly coupled ladder system. In the present work, based on the perturbative renormarization-group approach (PRG) deve...
متن کاملExotic gapless mott insulators of bosons on multileg ladders.
We present evidence for an exotic gapless insulating phase of hard-core bosons on multileg ladders with a density commensurate with the number of legs. In particular, we study in detail a model of bosons moving with direct hopping and frustrating ring exchange on a 3-leg ladder at ν=1/3 filling. For sufficiently large ring exchange, the system is insulating along the ladder but has two gapless ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010