The Total Number of Giant Planets in Debris Disks with Central Clearings
نویسندگان
چکیده
Infrared spectra from the Spitzer Space Telescope (SSC) of many debris disks are well fit with a single black body temperature which suggest clearings within the disk. We assume that inside the clearing orbital instability due to planets removes dust generating planetesimal belts and dust generated by the outer disk that is scattered or drifts into the clearing. From numerical integrations we estimate a minimum planet spacing required for orbital instability (and so planetesimal and dust removal) as a function of system age and planet mass. We estimate that a 10 year old debris disk with a dust disk edge at a radius of 50 AU hosted by an A star must contain approximately 5 Neptune mass planets between the clearing radius and the iceline in order to remove all primordial objects within it. We infer that known debris disk systems contain at least a fifth of a Jupiter mass in massive planets. The number of planets and spacing required is insensitive to the assumed planet mass. However an order of magnitude higher total mass in planets could reside in these systems if the planets are more massive.
منابع مشابه
On the Relationship Between Debris Disks and Planets
Dust in debris disks is generated by collisions among planetesimals. The existence of these planetesimals is a consequence of the planet formation process, but the relationship between debris disks and planets has not been clearly established. Here we analyze Spitzer/MIPS 24 and 70μm data for 150 planet-bearing stars, and compare the incidence of debris disks around these stars with a sample of...
متن کاملThe Kuiper Belt and Other Debris Disks
We discuss the current knowledge of the Solar system, focusing on bodies in the outer regions, on the information they provide concerning Solar system formation, and on the possible relationships that may exist between our system and the debris disks of other stars. Beyond the domains of the Terrestrial and giant planets, the comets in the Kuiper belt and the Oort cloud preserve some of our mos...
متن کاملMetallicity of solar-type stars with debris discs and planets
Context. Around 16% of the solar-like stars in our neighbourhood show IR-excesses due to dusty debris discs and a fraction of them are known to host planets. Determining whether these stars follow any special trend in their properties is important to understand debris disc and planet formation. Aims. We aim to determine in a homogeneous way the metallicity of a sample of stars with known debris...
متن کاملDynamics of small bodies in planetary systems
The number of stars that are known to have debris disks is greater than that of stars known to harbour planets. These disks are detected because dust is created in the destruction of planetesimals in the disks much in the same way that dust is produced in the asteroid belt and Kuiper belt in the solar system. For the nearest stars the structure of their debris disks can be directly imaged, show...
متن کاملProtoplanetary Gas Disks in the Far Infrared
The physical and chemical conditions in young protoplanetary disks set the boundary conditions for planet formation. Although the dust in disks is relatively easily detected as a far-IR photometric “excess” over the expected photospheric emission, much less is known about the gas phase. It seems clear that an abrupt transition from massive optically thick disks (gas–rich structures where only ∼...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007