Time series decomposition model for accurate wind speed forecast

نویسندگان

  • V. Prema
  • Uma Rao
چکیده

Climate change can be considered to be the greatest environmental challenge our world is facing today. Along with the need to ensure long-term assurance of energy supply, it imposes an obligation on all of us to consider ways of reducing our carbon footprint and sourcing more of our energy from renewable sources. Wind energy is one such source and forecasting methods for the prediction of wind speed are becoming increasingly significant due to the penetration of wind power as an alternative to conventional energy sources. This paper proposes time series models for short-term prediction of wind speed. The predictions are done for 1 day ahead using different time series models. For each model, these predicted values are compared with the actual values for the next day. Basic exponential smoothing for different duration of data was tested. A hybrid model with decomposition and exponential smoothing is proposed. A multiplicative decomposition is carried out for the measured data. Separate models were developed for seasonal and trend series and then combined to carry out the forecast. The models were tested for different durations of samples and different weather conditions. It is observed from the results that the prediction with decomposition model for 4 months data gave the least error.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Time Series Patterns for Wind Speed Volatilities in Anzali Meteorological Station

Abstract. One of the major problems in using wind energy is that wind-generated electricity is more unstable than electricity generated by other sources, and therefore integrating wind energy use with traditional power generation systems can be a challenge. This problem can be effectively reduced by having accurate information about the mean and wind speed volatilities. Therefore, in this paper...

متن کامل

Forecast of Hourly Wind Speed With Intelligent Model

This paper focuses on the forecast of hourly wind speed using an intelligent model. The hourly wind speed of the meteorological stations are forecasted and compared. The selected two sites of Taiwan meteorological stations are Lan-Yu and Tung-Chi-Tao, whose wind speeds are the highest among 25 areas during the period of 1971-2000. An intelligent time series model is developed and used to foreca...

متن کامل

Hour-Ahead Wind Speed and Power Forecasting Using Empirical Mode Decomposition

Operation of wind power generation in a large farm is quite challenging in a smart grid owing to uncertain weather conditions. Consequently, operators must accurately forecast wind speed/power in the dispatch center to carry out unit commitment, real power scheduling and economic dispatch. This work presents a novel method based on the integration of empirical mode decomposition (EMD) with arti...

متن کامل

A combined Wavelet- Artificial Neural Network model and its application to the prediction of groundwater level fluctuations

Accurate groundwater level modeling and forecasting contribute to civil projects, land use, citys planning and water resources management. Combined Wavelet-Artificial Neural Network (WANN) model has been widely used in recent years to forecast hydrological and hydrogeological phenomena. This study investigates the sensitivity of the pre-processing to the wavelet type and decomposition level in ...

متن کامل

کاربرد مدل‌های سری زمانی به منظور تعیین روند پارامترهای اقلیمی در آینده در راستای مدیریت منابع آب

Due to the important role of climatic parameters such as radiation, temperature, precipitation and evaporation rate in water resources management, this study employed time series modeling to forecast climatic parameters. After normality test of the parameters, nonparametric Mann-Kendall test was used in order to do trend analysis of data at P-value<0.05. Relative humidity and evaporation (with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015