Automatic Nuclei Segmentation in H&E Stained Breast Cancer Histopathology Images

نویسندگان

  • Mitko Veta
  • Paul J. van Diest
  • Robert Kornegoor
  • André Huisman
  • Max A. Viergever
  • Josien P. W. Pluim
چکیده

The introduction of fast digital slide scanners that provide whole slide images has led to a revival of interest in image analysis applications in pathology. Segmentation of cells and nuclei is an important first step towards automatic analysis of digitized microscopy images. We therefore developed an automated nuclei segmentation method that works with hematoxylin and eosin (H&E) stained breast cancer histopathology images, which represent regions of whole digital slides. The procedure can be divided into four main steps: 1) pre-processing with color unmixing and morphological operators, 2) marker-controlled watershed segmentation at multiple scales and with different markers, 3) post-processing for rejection of false regions and 4) merging of the results from multiple scales. The procedure was developed on a set of 21 breast cancer cases (subset A) and tested on a separate validation set of 18 cases (subset B). The evaluation was done in terms of both detection accuracy (sensitivity and positive predictive value) and segmentation accuracy (Dice coefficient). The mean estimated sensitivity for subset A was 0.875 (±0.092) and for subset B 0.853 (±0.077). The mean estimated positive predictive value was 0.904 (±0.075) and 0.886 (±0.069) for subsets A and B, respectively. For both subsets, the distribution of the Dice coefficients had a high peak around 0.9, with the vast majority of segmentations having values larger than 0.8.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automated Segmentation of Nuclei in Breast Cancer Histopathology Images

The process of Nuclei detection in high-grade breast cancer images is quite challenging in the case of image processing techniques due to certain heterogeneous characteristics of cancer nuclei such as enlarged and irregularly shaped nuclei, highly coarse chromatin marginalized to the nuclei periphery and visible nucleoli. Recent reviews state that existing techniques show appreciable segmentati...

متن کامل

Automatic image segmentation of nuclear stained breast tissue sections using color active contour model and an improved watershed method

Automatic image segmentation of immunohistologically stained breast tissue sections helps pathologists to discover the cancer disease earlier. The detection of the real number of cancer nuclei in the image is a very tedious and time consuming task. Segmentation of cancer nuclei, especially touching nuclei, presents many difficulties to separate them by traditional segmentation algorithms. This ...

متن کامل

New breast cancer prognostic factors identified by computer-aided image analysis of HE stained histopathology images

Computer-aided image analysis (CAI) can help objectively quantify morphologic features of hematoxylin-eosin (HE) histopathology images and provide potentially useful prognostic information on breast cancer. We performed a CAI workflow on 1,150 HE images from 230 patients with invasive ductal carcinoma (IDC) of the breast. We used a pixel-wise support vector machine classifier for tumor nests (T...

متن کامل

Breast abnormalities segmentation using the wavelet transform coefficients aggregation

Introduction: Breast cancer is the most common cancer among women in the world. The automatic detection of masses in digital mammograms is a challenging task and a major step in the development of breast cancer CAD systems. In this study, we introduce a new method for automatic detection of suspicious mass candidate (SMC) regions in a mammogram. Methods: Mammography is widely used for the early...

متن کامل

Segmentation of confocal microscope images of cell nuclei in thick tissue sections.

Segmentation of intact cell nuclei from three-dimensional (3D) images of thick tissue sections is an important basic capability necessary for many biological research studies. However, segmentation is often difficult because of the tight clustering of nuclei in many specimen types. We present a 3D segmentation approach that combines the recognition capabilities of the human visual system with t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013