Recognition of Surface Reflectance Properties from a Single Image under Unknown Real-World Illumination
نویسندگان
چکیده
This paper describes a machine vision system that classifies reflectance properties of surfaces such as metal, plastic, or paper, under unknown real-world illumination. We demonstrate performance of our algorithm for surfaces of arbitrary geometry. Reflectance estimation under arbitrary omnidirectional illumination proves highly underconstrained. Our reflectance estimation algorithm succeeds by learning relationships between surface reflectance and certain statistics computed from an observed image, which depend on statistical regularities in the spatial structure of real-world illumination. Although the algorithm assumes known geometry, its statistical nature makes it robust to inaccurate geometry estimates.
منابع مشابه
Surface Reflectance Estimation and Natural Illumination Statistics
Humans recognize optical reflectance properties of surfaces such as metal, plastic, or paper from a single image without knowledge of illumination. We develop a machine vision system to perform similar recognition tasks automatically. Reflectance estimation under unknown, arbitrary illumination proves highly underconstrained due to the variety of potential illumination distributions and surface...
متن کاملSurface reflectance recognition and real-world illumination statistics
Humans distinguish materials such as metal, plastic, and paper effortlessly at a glance. Traditional computer vision systems cannot solve this problem at all. Recognizing surface reflectance properties from a single photograph is difficult because the observed image depends heavily on the amount of light incident from every direction. A mirrored sphere, for example, produces a different image i...
متن کاملHow do Humans Determine Reflectance Properties under Unknown Illumination?
Under normal viewing conditions, humans find it easy to distinguish between objects made out of different materials such as plastic, metal, or paper. Untextured materials such as these have different surface reflectance properties, including lightness and gloss. With single isolated images and unknown illumination conditions, the task of estimating surface reflectance is highly underconstrained...
متن کاملSurface Reflectance Classifying under Natural Illumination
Though a point light source is more suitable to measure the BRDF of the surface, the natural illuminations in the real-world are not point light source and very complex. Fortunately, the complex natural illuminations exhibit some statistical regularity [3]. These statistical properties of the natural illuminations lead to predictable image statistics for a surface with given reflectance propert...
متن کاملEstimating surface reflectance properties from images under unknown illumination
Physical surfaces such as metal, plastic, and paper possess different optical qualities that lead to different characteristics in images. We have found that humans can effectively estimate certain surface reflectance properties from a single image without knowledge of illumination. We develop a machine vision system to perform similar reflectance estimation tasks automatically. The problem of e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001