Effects of Optical Interference and Annealing on the Performance of Polymer/Fullerene Bulk Heterojunction Solar Cells
نویسندگان
چکیده
Polymer solar cells are of tremendous interests due to their attractive properties such as flexibility, ease of fabrication, low materials and energy budget. However, organic materials have short exciton diffusion length and poor charge mobility, which can greatly decrease the performance of polymer solar cells. These challenges can be effectively overcome through the use of the bulk heterojunction (HJ) structure because it can guarantee the effective exciton dissociation and carrier transport simultaneously if a proper bicontinuous interpenetrating network is formed in the active layer. Based on this structure, the performance of polymer solar cells has been improved steadily in the past decade. The performance of a polymer solar cell is mainly determined by the short-circuit current density (JSC), the open circuit voltage (VOC), and the fill factor (FF), given that η=JSCVOCFF/Pin (where η is power conversion efficiency, PCE, and Pin is the incident optical power density). VOC has a direct relationship with the offset energies between the highest occupied molecular orbital of Donor (D) material and the lowest unoccupied molecular orbital of Acceptor (A) material (Cheyns et al., 2008). Since the D and A materials are intimately mixed together in the bulk HJ structure and their interfaces distribute everywhere in the active layer, it is difficult to increase VOC by changing D/A interface property for a given material system (such as poly(3-hexylthiophene-2,5-diyl):[6,6]-phenyl C61 butyric acid methyl ester, P3HT:PCBM). Thus the usually used optimization method is to improve JSC and FF. JSC greatly depends on the optical interference effect in polymer solar cells. Because of the very high optical absorption ability of organic materials, the active layer is very thin and typically from several ten to several hundred nanometers. This thickness is so thin compared to the incident light wavelength that the optical interference effect has to be carefully considered. Depending on the thicknesses and optical constants of the materials, the optical interference causes distinct distributions of the electric field and energy absorption density. Due to this effect, JSC shows an obvious oscillatory behavior with the variation of active layer thickness. In order to gain a high PCE, the active layer thickness needs to be well optimized according to the optical interference.
منابع مشابه
Improvement of light harvesting by inserting an optical spacer (ZnO) in polymer bulk heterojunction solar cells: A theoretical and experimental study
By introducing a thin ZnO layer as an optical spacer, we have demonstrated that inserting this layer between an active layer and a reflective electrode results in a re-distribution of the optical electric field inside bulk heterojunction solar cells. A theoretical analysis by optical modeling showed that the thin ZnO layer could shift the position of the maximum of the electric field into the a...
متن کاملHigh Efficiencies in Nanoscale Poly(3-Hexylthiophene)/Fullerene Solar Cells
A modified morphology was introduced for poly(3-hexylthiophene):phenyl-C71-butyric acid methyl ester (P3HT:PC71BM) bulk heterojunction (BHJ) solar cells by thermal and solvent annealing treatments in the presence of hydrophilic-hydrophobic block copolymers. Power conversion efficiency (PCE) plummet was prohibited during both thermal and solvent treatments for all BHJ devices modified wit...
متن کاملRoom to Improve Conjugated Polymer-Based Solar Cells: Understanding How Thermal Annealing Affects the Fullerene Component of a Bulk Heterojunction Photovoltaic Device
We examine how thermal annealing affects the fullerene network in conjugated polymer bulk heterojunction (BHJ) solar cells. We begin by creating electron-only devices with a BHJ geometry by blending the fullerene derivative [6,6]-phenyl-C61-butyric-acid-methyl-ester (PCBM) with polystyrene (PS). These electron-only PS:PCBM diodes function even with a poly(ethylenedioxithiophene):poly(styrenesul...
متن کاملUltrafast Studies of Exciton Migration and Polaron Formation in Sequentially Solution-Processed Conjugated Polymer/Fullerene Quasi-Bilayer Photovoltaics.
We examine the ultrafast dynamics of exciton migration and polaron production in sequentially processed 'quasi-bilayer' and preblended 'bulk heterojunction' (BHJ) solar cells based on conjugated polymer films that contain the same total amount of fullerene. We find that even though the polaron yields are similar, the dynamics of polaron production are significantly slower in quasi-bilayers than...
متن کاملEffects of Germanium Tetrabromide Addition to Zinc Tetraphenyl Porphyrin / Fullerene Bulk Heterojunction Solar Cells
The effects of germanium tetrabromide addition to tetraphenyl porphyrin zinc (Zn-TPP)/fullerene (C60) bulk heterojunction solar cells were characterized. The light-induced charge separation and charge transfer were investigated by current density and optical absorption. Addition of germanium tetrabromide inserted into active layer of Zn-TPP/C60 as bulk heterojunction had a positive effect on th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012