The Lichnerowicz Equation on Compact Manifolds with Boundary
نویسنده
چکیده
In this article we initiate a systematic study of the well-posedness theory of the Einstein constraint equations on compact manifolds with boundary. This is an important problem in general relativity, and it is particularly important in numerical relativity, as it arises in models of Cauchy surfaces containing asymptotically flat ends and/or trapped surfaces. Moreover, a number of technical obstacles that appear when developing the solution theory for open, asymptotically Euclidean manifolds have analogues on compact manifolds with boundary. As a first step, here we restrict ourselves to the Lichnerowicz equation, also called the Hamiltonian constraint equation, which is the main source of nonlinearity in the constraint system. The focus is on low regularity data and on the interaction between different types of boundary conditions, which have has not been carefully analyzed before. In order to develop a well-posedness theory that mirrors the existing theory for the case of closed manifolds, we first generalize the Yamabe classification to nonsmooth metrics on compact manifolds with boundary. We then extend a result on conformal invariance to manifolds with boundary, and prove a uniqueness theorem. Finally, by using the method of suband super-solutions (order-preserving map iteration), we then establish several existence results for a large class of problems covering a broad parameter regime, which includes most of the cases relevant in practice.
منابع مشابه
Boundary value problems for Dirac–type equations, with applications
We prove regularity for a class of boundary value problems for first order elliptic systems, with boundary conditions determined by spectral decompositions, under coefficient differentiability conditions weaker than previously known. We establish Fredholm properties for Dirac-type equations with these boundary conditions. Our results include sharp solvability criteria, over both compact and non...
متن کاملA Variational Analysis of Einstein–scalar Field Lichnerowicz Equations on Compact Riemannian Manifolds
We establish new existence and non-existence results for positive solutions of the Einstein–scalar field Lichnerowicz equation on compact manifolds. This equation arises from the Hamiltonian constraint equation for the Einstein–scalar field system in general relativity. Our analysis introduces variational techniques, in the form of the mountain pass lemma, to the analysis of the Hamiltonian con...
متن کاملStability and Multiple Solutions to Einstein-scalar Field Lichnerowicz Equation on Manifolds
In this paper, we study the stability and multiple solutions to Einstein-scalar field Lichnerowicz equation on compact Riemannian manifolds. In particular, in dimension no more than 5, we can find a different way (comparing with the previous result of Hebey-PacardPollack) by showing that there are at least two positive solutions or a unique positive solution according to the coercivity property...
متن کاملNon-cmc Solutions of the Einstein Constraint Equations on Compact Manifolds with Apparent Horizon Boundaries
In this article we continue our effort to do a systematic development of the solution theory for conformal formulations of the Einstein constraint equations on compact manifolds with boundary. By building in a natural way on our recent work in Holst and Tsogtgerel (2013), and Holst, Nagy, and Tsogtgerel (2008, 2009), and also on the work of Maxwell (2004, 2005, 2009) and Dain (2004), under reas...
متن کاملBoundary value problems for Dirac–type equations
We prove regularity for a class of boundary value problems for first order elliptic systems, with boundary conditions determined by spectral decompositions, under coefficient differentiability conditions weaker than previously known. We establish Fredholm properties for Dirac-type equations with these boundary conditions. Our results include sharp solvability criteria, over both compact and non...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013