Unsupervised Non Stationary Image Segmentation Using Triplet Markov Chains
نویسندگان
چکیده
This work deals with the unsupervised Bayesian hidden Markov chain restoration extended to the non stationary case. Unsupervised restoration based on “ExpectationMaximization” (EM) or “Stochastic EM” (SEM) estimates considering the “Hidden Markov Chain” (HMC) model is quite efficient when the hidden chain is stationary. However, when the latter is not stationary, the unsupervised restoration results can be poor, due to a bad match between the real and estimated models. In this paper we present a more appropriate model for non stationary HMC, via recent Triplet Markov Chains (TMC) model. Using TMC, we show that the classical restoration results can be significantly improved in the case of non stationary data. The latter improvement is performed in an unsupervised way using a SEM parameter estimation method. Some application examples to unsupervised image segmentation are also provided.
منابع مشابه
Unsupervised segmentation of hidden semi-Markov non-stationary chains
In the classical hidden Markov chain (HMC) model we have a hidden chain X , which is a Markov one and an observed chain Y . HMC are widely used; however, in some situations they have to be replaced by the more general “hidden semi-Markov chains” (HSMC), which are particular “triplet Markov chains” (TMC) ) , , ( Y U X T = , where the auxiliary chain U models the semi-Markovianity of X . Otherwis...
متن کاملUnsupervised segmentation of randomly switching data hidden with non-Gaussian correlated noise
Hidden Markov chains (HMC) are a very powerful tool in hidden data restoration and are currently used to solve a wide range of problems. However, when these data are not stationary, estimating the parameters, which are required for unsupervised processing, poses a problem. Moreover, taking into account correlated non-Gaussian noise is difficult without model approximations. The aim of this pape...
متن کاملNon-stationary fuzzy Markov chain
This paper deals with a recent statistical model based on fuzzy Markov random chains for image segmentation, in the context of stationary and non-stationary data. On one hand, fuzzy scheme takes into account discrete and continuous classes through the modeling of hidden data imprecision and on the other hand, Markovian Bayesian scheme models the uncertainty on the observed data. A non-stationar...
متن کاملSwitching Pairwise Markov Chains for Non Stationary Textured Images Segmentation
Hidden Markov chains (HMCs) have been extensively used to solve a wide range of problems related to computer vision, signal processing (Cappé, O., et al 2005) or bioinformatics (Koski, T., 2001). Such notoriety is due to their ability to recover the hidden data of interest using the entire observable signal thanks to some Bayesian techniques like MPM and MAP. HMCs have then been generalized to ...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004