A highly ordered structure in V(D)J recombination cleavage complexes is facilitated by HMG1.

نویسندگان

  • X Mo
  • T Bailin
  • S Noggle
  • M J Sadofsky
چکیده

Central to understanding the process of V(D)J recombination is appreciation of the protein-DNA complex which assembles on the recombination signal sequences (RSS). In addition to RAG1 and RAG2, the protein HMG1 is known to stimulate the efficiency of the cleavage reaction. Using electrophoretic mobility shift analysis we show that HMG1 stimulates the in vitro assembly of a stable complex with the RAG proteins on each RSS. We use UV crosslinking studies of this complex with azido-phenacyl derivatized probes to map the contact sites between the RAG proteins, HMG1 derivatives and the RSS. We find that the RAG proteins make contacts at the nonamer, heptamer and adjacent coding region. The HMG1 protein by itself appears to localize at the 3' side of the nonamer, but a cooperative complex with the RAG proteins is positioned at the 3' side of the heptamer and adjacent spacer in the 12RSS. In the complex with RAG proteins, HMG1 is positioned primarily in the spacer of the 23RSS. We suggest that bends introduced into these DNA substrates at specific locations by the RAG proteins and HMG1 may help distinguish the 12RSS from the 23RSS and may therefore play an important role in the coordinated reaction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HMG1 and 2: architectural DNA-binding proteins.

HMG1 and 2 (high mobility group proteins 1 and 2; renamed HMGB1 and 2) contain two DNA-binding HMG-box domains (A and B) and a long acidic C-terminal domain. They bind DNA without sequence specificity, but have a high affinity for bent or distorted DNA, and bend linear DNA. The individual A and B boxes (which, although broadly similar, show both structural and functional differences) exhibit ma...

متن کامل

The RAG1 homeodomain recruits HMG1 and HMG2 to facilitate recombination signal sequence binding and to enhance the intrinsic DNA-bending activity of RAG1-RAG2.

V(D)J recombination is initiated by the specific binding of the RAG1-RAG2 (RAG1/2) complex to the heptamer-nonamer recombination signal sequences (RSS). Several steps of the V(D)J recombination reaction can be reconstituted in vitro with only RAG1/2 plus the high-mobility-group protein HMG1 or HMG2. Here we show that the RAG1 homeodomain directly interacts with both HMG boxes of HMG1 and HMG2 (...

متن کامل

V(D)J Recombination: Modulation of RAG1 and RAG2 Cleavage Activity on 12/23 Substrates by Whole Cell Extract and DNA-bending Proteins

Antigen receptor gene rearrangement is directed by DNA motifs consisting of a conserved heptamer and nonamer separated by a nonconserved spacer of either 12 or 23 base pairs (12 or 23 recombination signal sequences [RSS]). V(D)J recombination requires that the rearranging DNA segments be flanked by RSSs of different spacer lengths, a phenomenon known as the 12/23 rule. Recent studies have shown...

متن کامل

RAG1 and RAG2 Form a Stable Postcleavage Synaptic Complex with DNA Containing Signal Ends in V(D)J Recombination

During V(D)J recombination, RAG1 and RAG2 cleave DNA adjacent to highly conserved recombination signals, but nothing is known about the protein-DNA complexes that exist after cleavage. Using a properly regulated in vitro V(D)J cleavage system, together with nuclease sensitivity, mobility shift, and immunoprecipitation experiments, we provide evidence that a stable complex is formed postcleavage...

متن کامل

Stimulation of V(D)J cleavage by high mobility group proteins.

V(D)J recombination requires a pair of signal sequences with spacer lengths of 12 and 23 bp between the conserved heptamer and nonamer elements. The RAG1 and RAG2 proteins initiate the reaction by making double-strand DNA breaks at both signals, and must thus be able to operate on these two different spatial arrangements. We show that the DNA-bending proteins HMG1 and HMG2 stimulate cleavage an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nucleic acids research

دوره 28 5  شماره 

صفحات  -

تاریخ انتشار 2000