Transistor-Level Gate Modeling for Nano CMOS Circuit Verification Considering Statistical Process Variations
نویسندگان
چکیده
Equationor table-based gate-level models (GLMs) have been applied in static timing analysis (STA) for decades. In order to evaluate the impact of statistical process variabilities, Monte Carlo (MC) simulations are utilized with GLMs for statistical static timing analysis (SSTA), which requires a massive amount of CPU time. Driven by the challenges associated with CMOS technology scaling to 45nm and below, intensive efforts have been contributed to optimize GLMs for higher accuracy at the expense of enhanced complexity. In order to maintain both accuracy and efficiency at 45nm node and below, in this paper we present a gate model built from a simplified transistor model. Considering the increasing statistical process variabilities, the model is embedded in our new statistical simulation engine, which can do both implicit non-MC statistical as well as deterministic simulations. Results of timing, noise and power grid analysis are presented using a 45nm PTMLP technology.
منابع مشابه
A PVT aware accurate statistical logic library for high- metal-gate nano-CMOS
The semiconductor industry is headed towards a new era of scaling and uncertainty with new key building blocks for the next-generation chips, the high-κ metal-gate transistor. There is a need for statistical characterization of high-κ metal-gate digital gates as a function of process parameter variations to make them available for designers. In this paper, we present a methodology for PVT aware...
متن کاملDeep Submicron Switching Current Modeling for Cmos Logic Output Transition Time Determination
Non zero signal rise and fall times contribute significantly to CMOS gate performances such as propagation delay or short circuit power dissipation. We present a closed form expression to model output rise and fall times in deep submicron CMOS structures. The model is first developed for inverters considering fast and slow input ramp conditions. It is then extended to gates through a reduction ...
متن کاملOutput transition time modeling of CMOS structures
Non zero signal rise and fall times contribute significantly to CMOS gate performances such as propagation delay or short circuit power dissipation. We present a closed form expression to model output rise and fall times in deep submicron CMOS structures. The model is first developed for inverters considering fast and slow input ramp conditions. It is then extended to gates through a reduction ...
متن کاملRandom Process Variation in Deep-Submicron CMOS
One of the most notable features of nanometer scale CMOS technology is the increasing magnitude of variability of the key parameters affecting performance of integrated circuits [1]. Although scaling made controlling extrinsic variability more complex, nonetheless, the most profound reason for the future increase in parameter variability is that the technology is approaching the regime of funda...
متن کاملRandom Process Variation in Deep-Submicron CMOS
One of the most notable features of nanometer scale CMOS technology is the increasing magnitude of variability of the key parameters affecting performance of integrated circuits [1]. Although scaling made controlling extrinsic variability more complex, nonetheless, the most profound reason for the future increase in parameter variability is that the technology is approaching the regime of funda...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010