Document Comparison with a Weighted Topic Hierarchy
نویسندگان
چکیده
A method of document comparison based on a hierarchical dictionary of topics (concepts) is described. The hierarchical links in the dictionary are supplied with the weights that are used for detecting the main topics of a document and for determining the similarity between two documents. The method allows for the comparison of documents that do not share any words literally but do share concepts, including comparison of documents in different languages. Also, the method allows for comparison with respect to a specific “aspect,” i.e., a specific topic of interest (with its respective subtopics). A system Classifier using the discussed method for document classification and information retrieval is discussed.
منابع مشابه
یک مدل موضوعی احتمالاتی مبتنی بر روابط محلّی واژگان در پنجرههای همپوشان
A probabilistic topic model assumes that documents are generated through a process involving topics and then tries to reverse this process, given the documents and extract topics. A topic is usually assumed to be a distribution over words. LDA is one of the first and most popular topic models introduced so far. In the document generation process assumed by LDA, each document is a distribution o...
متن کاملA Method of Describing Document Contents through Topic Selection
Given a large hierarchical dictionary of concepts, the task of selection of the concepts that describe the contents of a given document is considered. The problem consists in proper handling of the top-level concepts in the hierarchy. As a representation of the document, a histogram of the topics with their respective contribution in the document is used. The contribution is determined by compa...
متن کاملA Document Weighted Approach for Gender and Age Prediction Based on Term Weight Measure
Author profiling is a text classification technique, which is used to predict the profiles of unknown text by analyzing their writing styles. Author profiles are the characteristics of the authors like gender, age, nativity language, country and educational background. The existing approaches for Author Profiling suffered from problems like high dimensionality of features and fail to capture th...
متن کاملAutomatic keyword extraction using Latent Dirichlet Allocation topic modeling: Similarity with golden standard and users' evaluation
Purpose: This study investigates the automatic keyword extraction from the table of contents of Persian e-books in the field of science using LDA topic modeling, evaluating their similarity with golden standard, and users' viewpoints of the model keywords. Methodology: This is a mixed text-mining research in which LDA topic modeling is used to extract keywords from the table of contents of sci...
متن کاملA New Document Embedding Method for News Classification
Abstract- Text classification is one of the main tasks of natural language processing (NLP). In this task, documents are classified into pre-defined categories. There is lots of news spreading on the web. A text classifier can categorize news automatically and this facilitates and accelerates access to the news. The first step in text classification is to represent documents in a suitable way t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999