Targeting TBK1 inhibits migration and resistance to MEK inhibitors in mutant NRAS melanoma.
نویسندگان
چکیده
UNLABELLED Melanoma is a devastating form of skin cancer with limited therapeutic options. Fifteen to 20% of patients with melanoma have an activating mutation in the GTPase, NRAS. The major downstream effectors of RAS are RAFs (ARAF, BRAF, and CRAF), phosphoinositide 3-kinase (PI3K), and the Ral guanine exchange factors (RalGEF). TANK-binding kinase 1 (TBK1) is an atypical IκB kinase family member that acts downstream of RalGEFs. Whereas many studies have analyzed RAF and PI3K signaling in mutant NRAS melanoma, the role of RalGEF/Ral is understudied and TBK1 has not been examined. To address this, TBK1 was modulated with knockdown approaches and targeted therapies to determine the role of TBK1 in motility, apoptosis, and signaling. In melanoma, NRAS overexpression increased TBK1 phosphorylation. TBK1 depletion inhibited migration and invasion, whereas its constitutive overexpression led to an increase in invasion. In three-dimensional systems that mimic the dermal microenvironment, TBK1 depletion or inhibition cooperated with MEK inhibitors to promote apoptosis, particularly in the context of MEK-insensitive mutant NRAS. This effect was absent in melanoma cells that are wild-type for NRAS. These results suggest the utility of TBK1 inhibitors as part of a treatment regimen for patients with mutant NRAS melanoma, for whom there are no current effective therapies. IMPLICATIONS TBK1 promotes the malignant properties of NRAS-mutant melanoma and its targeting, in combination with MEK, promotes apoptosis, thus providing a potential novel targeted therapeutic option.
منابع مشابه
MAPK pathway inhibition enhances the efficacy of an anti-endothelin B receptor drug conjugate by inducing target expression in melanoma.
Therapies targeting the mitogen-activated protein (MAP) kinase pathway in melanoma have produced significant clinical responses; however, duration of response is limited by acquisition of drug resistance. Rational drug combinations may improve outcomes in this setting. We assessed the therapeutic combination of an antibody-drug conjugate (ADC) targeting the endothelin B receptor (EDNRB) with sm...
متن کاملCombined targeting of MEK and PI3K/mTOR effector pathways is necessary to effectively inhibit NRAS mutant melanoma in vitro and in vivo.
Activating mutations in the neuroblastoma rat sarcoma viral oncogene homolog (NRAS) gene are common genetic events in malignant melanoma being found in 15-25% of cases. NRAS is thought to activate both mitogen activated protein kinase (MAPK) and PI3K signaling in melanoma cells. We studied the influence of different components on the MAP/extracellular signal-regulated (ERK) kinase (MEK) and PI3...
متن کاملMIG6 is MEK-regulated and affects EGF-induced migration in mutant NRAS melanoma
Activating mutations in neuroblastoma RAS viral oncogene homolog (NRAS) are frequent driver events in cutaneous melanoma. NRAS is a guanosine triphosphate-binding protein whose most well-characterized downstream effector is RAF, leading to activation of mitogen-activated protein kinase (MEK)-extracellular signal-regulated protein kinase 1/2 signaling. Although there are no Food and Drug Adminis...
متن کاملParadox-Breaking RAF Inhibitors that Also Target SRC Are Effective in Drug-Resistant BRAF Mutant Melanoma
BRAF and MEK inhibitors are effective in BRAF mutant melanoma, but most patients eventually relapse with acquired resistance, and others present intrinsic resistance to these drugs. Resistance is often mediated by pathway reactivation through receptor tyrosine kinase (RTK)/SRC-family kinase (SFK) signaling or mutant NRAS, which drive paradoxical reactivation of the pathway. We describe pan-RAF ...
متن کاملCancer Biology and Signal Transduction MAPK Pathway Inhibition Enhances the Efficacy of an Anti- Endothelin B Receptor Drug Conjugate by Inducing Target Expression in Melanoma
Therapies targeting the mitogen-activated protein (MAP) kinase pathway in melanoma have produced significant clinical responses; however, duration of response is limited by acquisition of drug resistance. Rational drug combinationsmay improve outcomes in this setting.We assessed the therapeutic combination of an antibody–drug conjugate (ADC) targeting the endothelin B receptor (EDNRB) with smal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular cancer research : MCR
دوره 12 10 شماره
صفحات -
تاریخ انتشار 2014