Error Analysis of Discontinuous Galerkin Methods for Stokes Problem under Minimal Regularity

نویسنده

  • S. BADIA
چکیده

In this article, we analyze several discontinuous Galerkin methods (DG) for the Stokes problem under the minimal regularity on the solution. We assume that the velocity u belongs to [H 0 (Ω)] d and the pressure p ∈ L0(Ω). First, we analyze standard DG methods assuming that the right hand side f belongs to [H−1(Ω) ∩ L(Ω)]. A DG method that is well defined for f belonging to [H−1(Ω)]d is then investigated. The methods under study include stabilized DG methods using equal order spaces and inf-sup stable ones where the pressure space is one polynomial degree less than the velocity space.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetric error estimates for discontinuous Galerkin time-stepping schemes for optimal control problems constrained to evolutionary Stokes equations

Abstract. We consider fully discrete finite element approximations of a distributed optimal control problem, constrained by the evolutionary Stokes equations. Conforming finite element methods for spatial discretization combined with discontinuous time-stepping Galerkin schemes are being used for the space-time discretization. Error estimates are proved under weak regularity hypotheses for the ...

متن کامل

Convergence of a Discontinuous Galerkin Method for the Miscible Displacement under Minimal Regularity

Discontinuous Galerkin time discretizations are combined with the mixed finite element and continuous finite element methods to solve the miscible displacement problem. Stable schemes of arbitrary order in space and time are obtained. Under minimal regularity assumptions on the data, convergence of the scheme is proved by using compactness results for functions that may be discontinuous in time.

متن کامل

Error Estimates for the Discontinuous Galerkin Methods for Parabolic Equations

We analyze the classical discontinuous Galerkin method for a general parabolic equation. Symmetric error estimates for schemes of arbitrary order are presented. The ideas we develop allow us to relax many assumptions freqently required in previous work. For example, we allow different discrete spaces to be used at each time step and do not require the spatial operator to be self adjoint or inde...

متن کامل

A new error analysis for discontinuous finite element methods for linear elliptic problems

The standard a priori error analysis of discontinuous Galerkin methods requires additional regularity on the solution of the elliptic boundary value problem in order to justify the Galerkin orthogonality and to handle the normal derivative on element interfaces that appear in the discrete energy norm. In this paper, a new error analysis of discontinuous Galerkin methods is developed using only ...

متن کامل

Hp -version Discontinuous Galerkin Finite Element Methods for Semilinear Parabolic Problems

We consider the hp–version interior penalty discontinuous Galerkin finite element method (hp–DGFEM) for semilinear parabolic equations with mixed Dirichlet and Neumann boundary conditions. Our main concern is the error analysis of the hp–DGFEM on shape–regular spatial meshes. We derive error bounds under various hypotheses on the regularity of the solution, for both the symmetric and non–symmet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012