EPR studies of the mitochondrial alternative oxidase. Evidence for a diiron carboxylate center.

نویسندگان

  • Deborah A Berthold
  • Nina Voevodskaya
  • Pål Stenmark
  • Astrid Gräslund
  • Pär Nordlund
چکیده

The alternative oxidase (AOX) is a ubiquinol oxidase found in the mitochondrial respiratory chain of plants as well as some fungi and protists. It has been predicted to contain a coupled diiron center on the basis of a conserved sequence motif consisting of the proposed iron ligands, four glutamate and two histidine residues. However, this prediction has not been experimentally verified. Here we report the high level expression of the Arabidopsis thaliana alternative oxidase AOX1a as a maltose-binding protein fusion in Escherichia coli. Reduction and reoxidation of a sample of isolated E. coli membranes containing the alternative oxidase generated an EPR signal characteristic of a mixed-valent Fe(II)/Fe(III) binuclear iron center. The high anisotropy of the signal, the low value of the g-average tensor, and a small exchange coupling (-J) suggest that the iron center is hydroxo-bridged. A reduced membrane preparation yielded a parallel mode EPR signal with a g-value of about 15. In AOX containing a mutation of a putative glutamate ligand of the diiron center (E222A or E273A) the EPR signals are absent. These data provide evidence for an antiferromagnetic-coupled binuclear iron center, and together with the conserved sequence motif, identify the alternative oxidase as belonging to the growing family of diiron carboxylate proteins. The alternative oxidase is the first integral membrane protein in this family, and adds a new catalytic activity (ubiquinol oxidation) to this group of enzymatically diverse proteins.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aging-associated enzyme human clock-1: substrate-mediated reduction of the diiron center for 5-demethoxyubiquinone hydroxylation.

The mitochondrial membrane-bound enzyme Clock-1 (CLK-1) extends the average longevity of mice and Caenorhabditis elegans, as demonstrated for Δclk-1 constructs for both organisms. Such an apparent impact on aging and the presence of a carboxylate-bridged diiron center in the enzyme inspired this work. We expressed a soluble human CLK-1 (hCLK-1) fusion protein with an N-terminal immunoglobulin b...

متن کامل

Dioxygen Activation and Substrate Hydroxylation by the Hydroxylase Component of Toluene/o-xylene Monooxygenase

Non-heme carboxylate-bridged diiron centers in the hydroxylase components of the bacterial multicomponent monooxygenases activate dioxygen at structurally homologous active sites. Catalysis requires the management of four substrates: electrons, protons, dioxygen, and hydrocarbons. Protein component complexes control the delivery of these substrates to the diiron center in the hydroxylase ensuri...

متن کامل

Structure of the trypanosome cyanide-insensitive alternative oxidase.

In addition to haem copper oxidases, all higher plants, some algae, yeasts, molds, metazoans, and pathogenic microorganisms such as Trypanosoma brucei contain an additional terminal oxidase, the cyanide-insensitive alternative oxidase (AOX). AOX is a diiron carboxylate protein that catalyzes the four-electron reduction of dioxygen to water by ubiquinol. In T. brucei, a parasite that causes huma...

متن کامل

The aging-associated enzyme CLK-1 is a member of the carboxylate-bridged diiron family of proteins.

The aging-associated enzyme CLK-1 is proposed to be a member of the carboxylate-bridged diiron family of proteins. To evaluate this hypothesis and characterize the protein, we expressed soluble mouse CLK-1 (MCLK1) in Escherichia coli as a heterologous host. Using Mössbauer and EPR spectroscopy, we established that MCLK1 indeed belongs to this protein family. Biochemical analyses of the in vitro...

متن کامل

Structural and spectroscopic studies of valence-delocalized diiron(II,III) complexes dupported by carboxylate-only bridging ligands.

The synthesis, molecular structures, and spectroscopic properties of a series of valence-delocalized diiron(II,III) complexes are described. One-electron oxidation of diiron(II) tetracarboxylate complexes afforded the compounds [Fe(2)(mu-O(2)CAr(Tol))(4)L(2)]X, where L = 4-(t)BuC(5)H(4)N (1b), C(5)H(5)N (2b), and THF (3b); X = PF(6)(-) (1b and 3b) and OTf(-) (2b). In 1b-3b, four mu-1,3 carboxyl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 277 46  شماره 

صفحات  -

تاریخ انتشار 2002