Combinatorial depletion analysis to assemble the network architecture of the SAGA and ADA chromatin remodeling complexes
نویسندگان
چکیده
Despite the availability of several large-scale proteomics studies aiming to identify protein interactions on a global scale, little is known about how proteins interact and are organized within macromolecular complexes. Here, we describe a technique that consists of a combination of biochemistry approaches, quantitative proteomics and computational methods using wild-type and deletion strains to investigate the organization of proteins within macromolecular protein complexes. We applied this technique to determine the organization of two well-studied complexes, Spt-Ada-Gcn5 histone acetyltransferase (SAGA) and ADA, for which no comprehensive high-resolution structures exist. This approach revealed that SAGA/ADA is composed of five distinct functional modules, which can persist separately. Furthermore, we identified a novel subunit of the ADA complex, termed Ahc2, and characterized Sgf29 as an ADA family protein present in all Gcn5 histone acetyltransferase complexes. Finally, we propose a model for the architecture of the SAGA and ADA complexes, which predicts novel functional associations within the SAGA complex and provides mechanistic insights into phenotypical observations in SAGA mutants.
منابع مشابه
Recruitment of chromatin remodelling factors during gene activation via the glucocorticoid receptor N-terminal domain.
We have shown that yeast mutants with defects in the Ada adaptor proteins are defective in hormone-dependent gene activation by ectopically expressed human glucocorticoid receptor (GR). Others have shown that the Ada2 protein is required for physical interactions between some activation domains and TBP (TATA-binding protein), whereas the Gcn5 (Ada4) protein has a histone acetyltransferase (HAT)...
متن کاملSnf1p-dependent Spt-Ada-Gcn5-acetyltransferase (SAGA) recruitment and chromatin remodeling activities on the HXT2 and HXT4 promoters.
We previously showed that the Spt-Ada-Gcn5-acetyltransferase (SAGA) complex is recruited to the activated HXT2 and HXT4 genes and plays a role in the association of TBP-associated factors. Using the HXT2 and HXT4 genes, we now present evidence for a functional link between Snf1p-dependent activation, recruitment of the SAGA complex, histone H3 removal, and H3 acetylation. Recruitment of the SAG...
متن کاملTFIID and Spt-Ada-Gcn5-acetyltransferase functions probed by genome-wide synthetic genetic array analysis using a Saccharomyces cerevisiae taf9-ts allele.
TAF9 is a TATA-binding protein associated factor (TAF) conserved from yeast to humans and shared by two transcription coactivator complexes, TFIID and SAGA. The essentiality of the TAFs has made it difficult to ascertain their roles in TFIID and SAGA function. Here we performed a genomic synthetic genetic array analysis using a temperature-sensitive allele of TAF9 as a query. Results from this ...
متن کاملRoles of Chromatin insulators in gene regulation and diseases
With advances in genetic science, the dynamic structure of eukaryotic genome is considered as basis of gene expression regulation. Long-distance communication between regulatory elements and target promoters is critical and the mechanisms responsible for this connection are just starting to emerge. Chromatin insulators are key determinants of proper gene regulation and precise organization of c...
متن کاملTFIID and SAGA functions probed by genome-wide synthetic genetic array (SGA) analysis using a Saccharomyces cerevisiae taf9-ts allele
# These authors contributed equally to this work. ABSTRACT TAF9 is a TATA binding protein associated factor (TAF) conserved from yeast to humans, and shared by two transcription coactivator complexes, TFIID and SAGA. The essentiality of the TAFs has made it difficult to ascertain their roles in TFIID and SAGA function. Here, we performed a genomic synthetic genetic array analysis using a temper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2011