The Generation of Forces and Moments during Visual-Evoked Steering Maneuvers in Flying Drosophila

نویسندگان

  • Hiroki Sugiura
  • Michael H. Dickinson
چکیده

Sideslip force, longitudinal force, rolling moment, and pitching moment generated by tethered fruit flies, Drosophila melanogaster, were measured during optomotor reactions within an electronic flight simulator. Forces and torques were acquired by optically measuring the angular deflections of the beam to which the flies were tethered using a laser and a photodiode. Our results indicate that fruit flies actively generate both sideslip and roll in response to a lateral focus of expansion (FOE). The polarity of this behavior was such that the animal's aerodynamic response would carry it away from the expanding pattern, suggesting that it constitutes an avoidance reflex or centering response. Sideslip forces and rolling moments were sinusoidal functions of FOE position, whereas longitudinal force was proportional to the absolute value of the sine of FOE position. Pitching moments remained nearly constant irrespective of stimulus position or strength, with a direction indicating a tonic nose-down pitch under tethered conditions. These experiments expand our understanding of the degrees of freedom that a fruit fly can actually control in flight.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Descending Neuron Correlated with the Rapid Steering Maneuvers of Flying Drosophila.

To navigate through the world, animals must stabilize their path against disturbances and change direction to avoid obstacles and to search for resources [1, 2]. Locomotion is thus guided by sensory cues but also depends on intrinsic processes, such as motivation and physiological state. Flies, for example, turn with the direction of large-field rotatory motion, an optomotor reflex that is thou...

متن کامل

Neuromuscular control of aerodynamic forces and moments in the blowfly, Calliphora vicina.

Flies are among the most agile of flying insects, a capacity that ultimately results from their nervous system's control over steering muscles and aerodynamic forces during flight. In order to investigate the relationships among neuromuscular control, musculo-skeletal mechanics and flight forces, we captured high-speed, three-dimensional wing kinematics of the blowfly, Calliphora vicina, while ...

متن کامل

Design and construction of 6-component balance dynamometer for measurement of the forces, moments andmotions of ship models in the towing tank

During design spiral of a merchant ship or a naval vessel, it is important to perform towing tank tests in order to measure its performance either in calm water maneuvers or in waves for seakeeping performance. Also, to optimize a hydrodynamic design, towing tank tests are advantageous.This article presents the results of an applied research project. The objective of this project is to design a...

متن کامل

The active control of wing rotation by Drosophila.

This paper investigates the temporal control of a fast wing rotation in flies, the ventral flip, which occurs during the transition from downstroke to upstroke. Tethered flying Drosophila actively modulate the timing of these rapid supinations during yaw responses evoked by an oscillating visual stimulus. The time difference between the two wings is controlled such that the wing on the outside ...

متن کامل

Active and passive antennal movements during visually guided steering in flying Drosophila.

Insects use feedback from a variety of sensory modalities, including mechanoreceptors on their antennae, to stabilize the direction and speed of flight. Like all arthropod appendages, antennae not only supply sensory information but may also be actively positioned by control muscles. However, how flying insects move their antennae during active turns and how such movements might influence steer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • PLoS ONE

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2009