Natural antisense transcripts regulate the neuronal stress response and excitability
نویسندگان
چکیده
Neurons regulate ionic fluxes across their plasma membrane to maintain their excitable properties under varying environmental conditions. However, the mechanisms that regulate ion channels abundance remain poorly understood. Here we show that pickpocket 29 (ppk29), a gene that encodes a Drosophila degenerin/epithelial sodium channel (DEG/ENaC), regulates neuronal excitability via a protein-independent mechanism. We demonstrate that the mRNA 3'UTR of ppk29 affects neuronal firing rates and associated heat-induced seizures by acting as a natural antisense transcript (NAT) that regulates the neuronal mRNA levels of seizure (sei), the Drosophila homolog of the human Ether-à-go-go Related Gene (hERG) potassium channel. We find that the regulatory impact of ppk29 mRNA on sei is independent of the sodium channel it encodes. Thus, our studies reveal a novel mRNA dependent mechanism for the regulation of neuronal excitability that is independent of protein-coding capacity. DOI: http://dx.doi.org/10.7554/eLife.01849.001.
منابع مشابه
Regulation of inducible gene expression by natural antisense transcripts.
Natural antisense transcripts are frequently transcribed from many genes in eukaryotes. Although natural antisense transcripts have been recognized for a long time, their importance has been overlooked due to their heterogeneity, low expression level, and unknown function. Genes induced in responses to various external stimuli are transcriptionally regulated by the activation of a gene promoter...
متن کاملInvestigation of the effects of a new synthetic iron nanochelator on neuronal excitability in the presence and absence of oxidative stress
Introduction: Oxidative stress is one of the important pathologic factors involved in the pathogenesis of neurodegenerative diseases. Antioxidants as neutralizing agents of free radicals are one of the treatment options for these diseases and antioxidant agents that can pass through blood brain barrier have beneficial effects. In the present research, the antioxidant effect of a new iron ...
متن کاملNatural antisense transcripts are co-expressed with sense mRNAs in synaptoneurosomes of adult mouse forebrain.
Natural antisense transcripts and overlapping sense transcripts are expressed in a variety of tissues, including adult mouse brain. Here we show that a subset of mRNA-like sense-antisense transcript pairs are co-expressed within synaptoneurosomes of adult mouse forebrain, a subcellular fraction that is enriched in pinched-off dendritic spines of pyramidal neurons. Several of these pairs involve...
متن کاملBiological functions of natural antisense transcripts
Natural antisense transcripts (NATs) are RNA molecules that originate from opposite DNA strands of the same genomic locus (cis-NAT) or unlinked genomic loci (trans-NAT). NATs may play various regulatory functions at the transcriptional level via transcriptional interference. NATs may also regulate gene expression levels post-transcriptionally via induction of epigenetic changes or double-strand...
متن کاملEndogenous siRNAs Derived from a Pair of Natural cis-Antisense Transcripts Regulate Salt Tolerance in Arabidopsis
In higher eukaryotes, miRNAs and siRNAs guide translational inhibition, mRNA cleavage, or chromatin regulation. We found that the antisense overlapping gene pair of Delta(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH), a stress-related gene, and SRO5, a gene of unknown function, generates two types of siRNAs. When both transcripts are present, a 24-nt siRNA is formed by a biogenesis pathway d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2014