Convergence of a non-stiff boundary integral method for interfacial flows with surface tension

نویسندگان

  • Héctor D. Ceniceros
  • Thomas Y. Hou
چکیده

Boundary integral methods to simulate interfacial flows are very sensitive to numerical instabilities. In addition, surface tension introduces nonlinear terms with high order spatial derivatives into the interface dynamics. This makes the spatial discretization even more difficult and, at the same time, imposes a severe time step constraint for stable explicit time integration methods. A proof of the convergence of a reformulated boundary integral method for two-density fluid interfaces with surface tension is presented. The method is based on a scheme introduced by Hou, Lowengrub and Shelley [ J. Comp. Phys. 114 (1994), pp. 312–338] to remove the high order stability constraint or stiffness. Some numerical filtering is applied carefully at certain places in the discretization to guarantee stability. The key of the proof is to identify the most singular terms of the method and to show, through energy estimates, that these terms balance one another. The analysis is at a time continuous-space discrete level but a fully discrete case for a simple Hele-Shaw interface is also studied. The time discrete analysis shows that the high order stiffness is removed and also provides an estimate of how the CFL constraint depends on the curvature and regularity of the solution. The robustness of the method is illustrated with several numerical examples. A numerical simulation of an unstably stratified two-density interfacial flow shows the roll-up of the interface; the computations proceed up to a time where the interface is about to pinch off and trapped bubbles of fluid are formed. The method remains stable even in the full nonlinear regime of motion. Another application of the method shows the process of drop formation in a falling single fluid.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A small-scale decomposition for 3D boundary integral computations with surface tension

An efficient, non-stiff boundary integral method for the initial value problem for interfacial Darcy flow (which is a model of porous media flow) in three space dimensions is presented. We consider a ‘doubly-periodic’ interface separating two fluids, with surface tension present at the boundary. Surface tension introduces high order (i.e., high derivative) terms in the governing equation, and t...

متن کامل

Convergence of a boundary integral method for 3D interfacial Darcy flow with surface tension

We study convergence of a boundary integral method for 3D interfacial flow with surface tension when the fluid velocity is given by Darcy’s Law. The method is closely related to a previous method developed and implemented by Ambrose, Siegel, and Tlupova, in which one of the main ideas is the use of an isothermal parameterization of the free surface. We prove convergence by proving consistency a...

متن کامل

A Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).

This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...

متن کامل

TENSION TRIGONOMETRIC SPLINES INTERPOLATION METHOD FOR SOLVING A LINEAR BOUNDARY VALUE PROBLEM

By using the trigonometric uniform splines of order 3 with a real tension factor, a numericalmethod is developed for solving a linear second order boundary value problems (2VBP) withDirichlet, Neumann and Cauchy types boundary conditions. The moment at the knots isapproximated by central finite-difference method. The order of convergence of the methodand the theory is illustrated by solving tes...

متن کامل

An Experimental Investigation of Water Effects on Asphaltene Surface Behavior through Interfacial Tension Measurements

As a physiochemical property, asphaltenes are known to be one the most surface active compounds in crude oil. Due to such property, their behavior is most probably influenced by fluid-fluid interactions at the contact surface (interface). Potentially and naturally, in most cases, water is in contact with crude oil and is co-produced with it as well. Considering that asphaltene molecules are pol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Comput.

دوره 67  شماره 

صفحات  -

تاریخ انتشار 1998