Reinforcement Learning of Adaptive Longitudinal Control for Dynamic Collaborative Driving

نویسندگان

  • Luke Ng
  • Christopher M. Clark
  • Jan P. Huissoon
چکیده

Dynamic collaborative driving involves the motion coordination of multiple vehicles using shared information from vehicles instrumented to perceive their surroundings in order to improve road usage and safety. A basic requirement of any vehicle participating in dynamic collaborative driving is longitudinal control. Without this capability, higher-level coordination is not possible. Each vehicle involved is a composite nonlinear system powered by an internal combustion engine, equipped with automatic transmission, rolling on rubber tires with a hydraulic braking system. This paper focuses on the problem of longitudinal motion control. A longitudinal vehicle model is introduced which serves as the control system design platform. A longitudinal adaptive control system which uses Monte Carlo Reinforcement Learning is introduced. The results of the reinforcement learning phase and the performance of the adaptive control system for a single automobile as well as the performance in a multi-vehicle platoon is presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Decentralized Reinforcement Learning Controller for Collaborative Driving

Research in the collaborative driving domain strives to create control systems that coordinate the motion of multiple vehicles in order to navigate traffic both efficiently and safely. In this paper a novel individual vehicle controller based on reinforcement learning is introduced. This controller is capable of both lateral and longitudinal control while driving in a multi-vehicle platoon. The...

متن کامل

Mini/Micro-Grid Adaptive Voltage and Frequency Stability Enhancement Using Q-learning Mechanism

This paper develops an adaptive control method for controlling frequency and voltage of an islanded mini/micro grid (M/µG) using reinforcement learning method. Reinforcement learning (RL) is one of the branches of the machine learning, which is the main solution method of Markov decision process (MDPs). Among the several solution methods of RL, the Q-learning method is used for solving RL in th...

متن کامل

An Adaptive Learning Game for Autistic Children using Reinforcement Learning and Fuzzy Logic

This paper, presents an adapted serious game for rating social ability in children with autism spectrum disorder (ASD). The required measurements are obtained by challenges of the proposed serious game. The proposed serious game uses reinforcement learning concepts for being adaptive. It is based on fuzzy logic to evaluate the social ability level of the children with ASD. The game adapts itsel...

متن کامل

Reinforcement Learning Based PID Control of Wind Energy Conversion Systems

In this paper an adaptive PID controller for Wind Energy Conversion Systems (WECS) has been developed. Theadaptation technique applied to this controller is based on Reinforcement Learning (RL) theory. Nonlinearcharacteristics of wind variations as plant input, wind turbine structure and generator operational behaviordemand for high quality adaptive controller to ensure both robust stability an...

متن کامل

Reinforcement Learning in Neural Networks: A Survey

In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009