New Hopf Structures on Binary Trees

نویسندگان

  • Stefan Forcey
  • Aaron Lauve
  • Frank Sottile
چکیده

The multiplihedra · = (Mn)n≥1 form a family of polytopes originating in the study of higher categories and homotopy theory. While the multiplihedra may be unfamiliar to the algebraic combinatorics community, it is nestled between two families of polytopes that certainly are not: the permutahedra · and associahedra Y·. The maps · ։ · ։ · reveal several new Hopf structures on tree-like objects nestled between the Hopf algebras SSym and YSym. We begin their study here, showing that MSym is a module over SSym and a Hopf module over YSym. Rich structural information about MSym is uncovered via a change of basis—using Möbius inversion in posets built on the 1-skeleta of M·. Our analysis uses the notion of an interval retract, which should have independent interest in poset combinatorics. It also reveals new families of polytopes, and even a new factorization of a known projection from the associahedra to hypercubes. Résumé. Les multiplihédra · = (Mn)n≥1 formez une famille des polytopes provenant de l’étude des catégories plus élevées et de la théorie homotopy. Tandis que le multiplihédra peut être peu familier à la communauté algébrique de combinatoire, il est niché entre deux familles des polytopes qui ne sont pas certainement : le permutahédra · et l’associahédra Y·. Les morphisms · ։ · ։ · indiquent plusieurs nouvelles structures de Hopf en fonction arbre-comme des objets nichés entre les algèbres de Hopfs SSym et YSym. Nous commen cons leur étude ici, prouvant que MSym est un module au-dessus de SSym et un module de Hopf au-dessus de YSym. Des informations structurales riches sur MSym sont découvertes par l’intermédiaire d’une modification de base—utilisant inversion de Möbius dans les posets établis sur le 1-skeleta de M·. Notre analyse utilise la notion d’un intervalle se rétractent, qui devrait avoir l’intérêt indépendant pour la combinatoire de poset. Elle indique également de nouvelles familles des polytopes, et même une nouvelle factorisation d’une projection connue de l’associahédra aux hypercubes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1 1 D ec 2 00 5 Trees , set compositions , and the twisted descent algebra

We first show that increasing trees are in bijection with set compositions, extending simultaneously a recent result on trees due to Chapoton and a classical result on increasing binary trees. We then consider algebraic structures on the linear span of set compositions (the twisted descent algebra). A number of new Hopf algebra structures (neither commutative or cocommutative) and of enveloping...

متن کامل

QED Hopf algebras on planar binary trees

In this paper we describe the Hopf algebras on planar binary trees used to renormalize the Feynman propagators of quantum electrodynamics, and the coaction which describes the renormalization procedure. Both structures are related to some semi-direct coproduct of Hopf algebras.

متن کامل

Algebraic and combinatorial structures on pairs of twin binary trees

We give a new construction of a Hopf algebra defined first by Reading [Rea05] whose bases are indexed by objects belonging to the Baxter combinatorial family (i.e., Baxter permutations, pairs of twin binary trees, etc.). Our construction relies on the definition of the Baxter monoid, analog of the plactic monoid and the sylvester monoid, and on a RobinsonSchensted-like correspondence and insert...

متن کامل

Commutative combinatorial Hopf algebras

We propose several constructions of commutative or cocommutative Hopf algebras based on various combinatorial structures and investigate the relations between them. A commutative Hopf algebra of permutations is obtained by a general construction based on graphs, and its noncommutative dual is realized in three different ways, in particular, as the Grossman–Larson algebra of heap-ordered trees. ...

متن کامل

2 2 Fe b 20 05 COMMUTATIVE HOPF ALGEBRAS OF PERMUTATIONS AND TREES

We propose several constructions of commutative or cocommutative Hopf algebras based on various combinatorial structures, and investigate the relations between them. A commutative Hopf algebra of permutations is obtained by a general construction based on graphs, and its non-commutative dual is realized in three different ways, in particular as the Grossman-Larson algebra of heap ordered trees....

متن کامل

6 S ep 2 00 6 Trees , set compositions , and the twisted descent algebra

We first show that increasing trees are in bijection with set compositions, extending simultaneously a recent result on trees due to Tonks and a classical result on increasing binary trees. We then consider algebraic structures on the linear span of set compositions (the twisted descent algebra). Among others, a number of enveloping algebra structures are introduced and studied in detail. For e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009